Development of conditions for analytical diagnosis of poisoning with clopidogrel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Clopidogrel bisulfate (Clopidogrel) is one of the main drugs for the treatment of various cardiovascular diseases (acute coronary syndrome, ischemic stroke, transient ischemic attack, peripheral artery disease, etc.). Especially, this drug is very relevant in the treatment of COVID-19. Clopidogrel has repeatedly been the cause of lethal poisoning, and cases of clopidogrel being used for suicide are very common in China. According to the studied literature data, the analysis of this drug in the biological material is not presented. Objective: The aim of the research was to establish the distinctive ability of conventional methods of isolating medicinal substances from biological material in relation to clopidogrel in chemical and toxicological analysis (CTA). Material and methods. The study was carried out with model samples of pig liver that had not undergone putrefactive changes, which contained the studied drug. Detection and quantification of clopidogrel in extracts were carried out using thin-layer chromatography (TLC) and UV spectrophotometry. Results. The isolation efficiency of clopidogrel according to the method of A.A. Vasilyeva was 57.75±5.08%, according to the method of V.P. Kramarenko - 64.23±5.44%. When using the isolation method of A.A. Vasilyeva, the detection limit of clopidogrel was 1.04%, according to the method of V.P. Kramarenko - 1.09%. The limit of quantitative determination of clopidogrel according to the method of A.A. Vasilyeva is 3.31%, according to the method of V.P. Kramarenko - 3.34%, respectively. Conclusion. For analytical diagnostics in case of clopidogrel poisoning, TLC screening and UV spectrophotometric determination must be carried out with preliminary TLC purification. Isolation of clopidogrel with water acidified with ethyl alcohol (the Stas-Otto method) does not work. The effectiveness of isolating the drug by the method of V.P. Kramarenko is 64.23±5.44%. The greatest selectivity of the UV spectrophotometric method for determining clopidogrel in biological material in relation to matrix components was provided by the method of isolation with water acidified with sulfuric acid (V.P. Kramarenko's method).

Full Text

Restricted Access

About the authors

Lyudmila Sergeevna Anosova

Donetsk National Medi

Author for correspondence.
Email: apteka-nanya@yandex.ru
Candidate of Pharmaceutical Sciences, Assistant of the Department of Pharmaceutical and Medical Chemistry

References

  1. Physicians' Desk Reference. 54th ed. Montvale: Medical Economics. 2000; 2756-8.
  2. Clarke's analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material: 4th ed. ed. by A.C. Moffat, M.D. Osselton, B. Widdop. London: The Pharm. Press. 2011; 2609.
  3. Capodanno D., Alberts M.J., Angiolillo D.J. Antithrombotic therapy for secondary prevention of atherothrombotic events in cerebrovascular disease. Nature Reviews Cardiology. 2016; 13: 609-22.
  4. Bonello L. et al. Clopidogrel Response Variability: Etiology and Clinical Relevance Current Cardiovascular Risk Reports. 2015; 9 (3): 1-9.
  5. Nijenh V.J. uis et al. Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2020; 382 (18): 1696-707. doi: 10.1056/NEJMoa1915152.
  6. Nairooz R. et al. Meta-analysis of clopidogrel pretreatment in acute coronary syndrome patients undergoing invasive strategy. International J. of Cardiology. 2017; 229 (15): 82-9.
  7. Trenk D., Zolk O., Fromm M.F. et al. Personalizing antiplatelet therapy with clopidogrel. Clin. Pharmacol. Ther. 2012; 92: 476-85.
  8. Голухова Е.З., Григорян М.В., Рябинина М.Н. Современные аспекты фармакогенетики клопидогрела и его клиническое значение. Креативная кардиология. 2014; 3: 39-52.
  9. Аносова Л.С. Распределение клопидогрела в органах отравленных животных. Фармация. 2021; 70 (6): 31-6. doi: 10.29296/25419218-2021-06-06
  10. Fukusako T. et al. Case of thrombotic thrombocytopenic purpura associated with clopidogrel. Rinsho Shinkeigaku. 2007; 47 (10): 635-8.
  11. Borderias C.L., Garrapiz L.J., Caballero G. Pulmonary haemorrhage and haemothorax after massive ingestion of clopidogrel as a suicide attempt. Arch. Bronconeumol. 2009; 45 (11): 570-1. doi: 10.1016/j.arbres.2009.06.009.
  12. Kocabay G., Okgular I., Akkaya V., Guler K. Suicide attempt with clopidogrel. Hum. Exp. Toxicol. 2006; 25 (12): 731-4.
  13. Al Asmar R., Zeid F. Acute Hemothorax Causing Hemorrhagic Shock Following Small-bore Thoracocentesis in a Patient on Clopidogrel: A Case Report and Literature Review. Cureus. 2020; 12 (3): e7431. doi: 10.7759/cureus.7431.
  14. Бондар В.С., Аносова Л.С. Високоефективна рідинна хроматографія в аналізі клопідогрелю. Фармацевт. часоп. 2012; 4 (24): 73-8
  15. Красных Л.М., Карлицкая А.А. Количественное определение клопидогрела в плазме крови методом ВЭЖХ с масс-спектрометрическим детектором. Биомедицина. 2011; 4: 96-7.
  16. Lenka Vocilkovaa, Radka Opatrilova and Vladimir Srameka. Determination of Clopidogrel by Chromatography. Current Pharmaceutical Analysis. 2009; 5 (4): 1-8.
  17. Lagorce P., Perez Y., Ortiz J., Necciari J., Bressollec F. Assay method for the carboxylic acid metabolite of clopidogrel in human plasma by gas chromatography-mass spectrometry. J. Chromatogr. B. 2008; 720 (1-2): 107-17.
  18. Takahashi M., Pang H., Kawabata K., Farid N.A., Kurihara A. Stabilization of the clopidogrel active metabolite in whole blood and its assay in human plasma by LC/MS/MS J. Pharm. Biomed. Anal. 2008; 48 (4): 1219-24.
  19. Patel N.K., Subbaiah G., Shah H., Kundlik M., Shrivastav P.S. Rapid LC-ESI-MS-MS method for the simultaneous determination of clopidogrel and its carboxylic acid metabolite in human plasma. J. Chromatogr. Sci. 2008; 46 (10): 867-75.
  20. Государственная Фармакопея Российской Федерации, XIV изд., том I., ОФС.1.1.0022.18 «Мерная посуда». [Электронное издание]. Режим доступа: https://femb.ru/record/pharmacopea14.
  21. Бондарь В.С., Аносова Л.С., Шовковая З.В. Изолирование клопидогрела и его метаболита из биоматериала. Фармация Казахстана. 2013; 7: 34-7.
  22. Бондарь В.С., Аносова Л.С. Розробка методів ідентифікації клопідогрелю, придатних для хіміко-токсикологічного аналізу. Фармація України. Погляд у майбутнє: матеріали VIІ Нац. з’їзду фармацевтів України, 15-17 верес. 2010 р., Харків. Х. 2010; 1: 137.
  23. Бондар В.С., Аносова Л.С., Шовкова З.В. Ідентифікація клопідогрелю та його метаболіту за допомогою методу тонкошарової хроматографії. Укр. мед. альм. 2013; 16 (1): 50-2.
  24. SOFT/AAFS Forensic Laboratory Guidelines. 2006; 24. [Электронный ресурс]. Available at: http://www.soft-tox.org/files/Guidelines_2006_Final.pdf
  25. Государственная фармакопея Российской Федерации. ОФС.1.1.0012.15 «Валидация аналитических методик». МЗ РФ. XIII изд. Т. 1. Москва, 2015; 1470.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. UV light absorption spectrum clopidogrel (in 0.1 M solution of hydrochloric acid), isolated from the liver by the method A.A. Vasilyeva

Download (55KB)
3. Fig. 2. UV light absorption spectrum clopidogrel (in 0.1 M solution of hydrochloric acid), isolated from the liver by the method V.Р. Кrаmаrеnко

Download (54KB)

Copyright (c) 2022 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies