Computer-based simulation of the interaction of amidrazone hydrogen halides with target proteins


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. A number of biologically active amidrazone hydrogen halides have been synthesized, which are a promising group to design agents having antibacterial and antifungal activities. Objective: to make a prognosis and computer-based simulation of the interaction of synthesized compounds with bacterial and fungal targets. Material and methods. Computer-based simulation of the interaction of amidrazone derivatives with potential bacterial and fungal targets was performed for the obtained compounds, by using the PASS, PASS Targets, and Schrödinger Small-Molecule Drug Discovery Suite Release 2018-2 software. Results. The investigators obtained a computer-based prediction of the spectrum of potential biological activity of the synthesized amidrazone hydrogen halides 3a-f. The PASS Targets program was used to propose target proteins from microorganisms (cystathionine--β-lyase (1CL2) from Escherichia coli, phosphopantetheinyl transferase (1QR0) from Bacillus cereus, exo--β-(1,3)-glucanase (2PB1) from Candida albicans, and dehydrosqualene synthase (3ACX) from Staphylococcus aureus) to simulate the interaction with amidrazons 3a-f. Two targets (2PB1 and 3ACX) were ascertained to be promising for the design of novel antibiotic drugs based on amidrazone. The investigation results can be used as a targeted search for and synthesis of low-toxic effective antimicrobial agents. Conclusion. The predictive computer-based simulation of a number of novel compounds (amidrazone hydrogen halides - 3) based on N'-arylbenzenecarboximidohydrazides could determine possible targets for their interaction with amidrazone derivatives. There is evidence that they are important in the vital processes of the microorganisms in question. The targets that can be a goal for compounds of the amidrazone class are selected.

全文:

受限制的访问

作者简介

Anna Senina

Saint Petersburg State Chemopharmaceutical University

Email: anna.senina@pharminnotech.com
JRF Saint-Petersburg State Chemical and Pharmaceutical 14, Prof. Popov St., Saint Petersburg 197376, Russian Federation

Karina Pats

Saint Petersburg National Research University of Information Technologies Mechanics and Optics (ITMO University)

Email: karina.m.pats@gmail.com
PhD student of the Information Technologies and Programming Faculty 49, Kronverksky Prospect, Saint Petersburg 197101, Russian Federation

Andrey Moskvin

Saint Petersburg State Chemopharmaceutical University

Email: andrei.moskvin@pharminnotech.com
Head of the Department of inorganic chemistry, Doctor of Chemical Sciences, Professor. 14, Prof. Popov St., Saint Petersburg 197376, Russian Federation

Yuriy Porozov

Saint Petersburg National Research University of Information Technologies Mechanics and Optics (ITMO University); I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: yuri.porozov@gmail.com
Head of the Laboratory of Bioinformatics; ordinary assistant professor Faculty of Biotechnologies 49, Kronverksky Prospect, Saint Petersburg 197101, Russian Federation; 8, Trubetskaya St., Build. 2, Moscow 119991, Russian Federation

参考

  1. Евдокимов А.А., Сенина А.С., Москвин А.В. и др. Синтез, строение и биологическая активность некоторых амидразонов. Бутлеровские сообщения. 2014; 39 (8): 87-90. DOI: jbc-01/14-39-8-87.
  2. Сенина А.С., Гурина С.В., Москвин А.В. Противомикробная активность гидрогалогенидов амидразонов. Фармация. 2017; 8: 40-4.
  3. Сенина А.С., Москвин А.В., Гурина С.В., Авенирова Е.Л. Биологическая активность гидрогалогенидов амидразонов. Разработка и регистрация лекарственных средств. 2018; 1 (22): 114-9. doi: 10.1021/acs.jctc.5b00864.
  4. Harder E. et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 2016; 12: 281-96. doi: 10.1021/acs.jctc.5b00864.
  5. Sastry G.M. et al. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aid. Mol. Des. 2013; 27 (3): 221-34. doi: 10.1007/s10822-013-9644-8.
  6. Schrödinger Release 2018-2: Site Map, Schrödinger, LLC, New York, NY, 2018.
  7. Schrödinger Release 2018-2: Glide, Schrödinger, LLC, New York, NY, 2018.
  8. Schrödinger Release 2018-2: Lig Prep, Schrödinger, LLC, New York, NY, 2018.
  9. Desmond Molecular Dynamics System, D.E. Shaw Research, New York, NY, 2018. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2018.
  10. Beld J. et al. The Phosphopantetheinyl Transferases: Catalysis of a Posttranslational Modification Crucial for Life. Nat. Prod. Rep. 2014; 31 (1): 61-108. doi: 10.1039/C3NP70054B.
  11. Lodha P.H. et al. Characterization of site-directed mutants of residues R58, R59, D116, W340 and R372 in the active site of E. coli cystathionine b-lyase. Prorein Science. 2010; 19: 383-91. doi: 10.1002/pro.308.
  12. Nakatani Y. et al. Major Change in Regiospecificity for the Exo-1,3-ß-glucanase from Candida albicans following Its Conversion to a Glycosynthase. Biochemistry. 2014; 53: 331826. doi: 10.1021/bi500239m.
  13. Patrick W.M. et al. Carbohydrate binding sites in Candida albicans exo-b-1,3-glucanase and the role of the Phe-Phe «clamp» at the active site entrance. FEBS J. 2010; 277: 4549-61. doi: 10.1111/j.1742-4658.2010.07869.x.
  14. Lin F.-Y. et al. A Mechanism of action and inhibition of dehydrosqualene synthase. PNAS. 2010; 107 (50): 21337-42. doi: 10.1126/science.1153018.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2020
##common.cookie##