Large deformations of a cylindrical tube with prestressed coatings

Cover Page

Abstract


General theoretical relations for calculating the redistribution of the preliminary irreversible strain field during unloading or elastic loading of a medium are obtained for the nonlinear multiplicative gradient model of large elastic-plastic deformations. It is shown that the dynamics of elastic shock waves does not depend directly on the previously accumulated plastic strains. A formula for the plastic-strain rotation tensor is obtained. It is shown that rigid rotation of plastic strains under elastic shock waves can be jump-like. All results are obtained for the general case of model relations of isotropic media and are valid for both compressible and incompressible materials.


About the authors

Yu. N. Kulchin

Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: dudko@iacp.dvo.ru

Russian Federation, 5, Radio street, Vladivostok, 690041

Academician of the RAS

V. E. Ragozina

Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences

Email: dudko@iacp.dvo.ru

Russian Federation, 5, Radio street, Vladivostok, 690041

O. V. Dudko

Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences

Email: dudko@iacp.dvo.ru

Russian Federation, 5, Radio street, Vladivostok, 690041

References

  1. Lee E.H., McMeeking R.M. // Int. J. Solids Struct. 1980. V. 16. Iss. 8. P. 715–721.
  2. Поздеев А.А., Трусов П.В., Няшин Ю.И. Большие упруго-пластические деформации: теория, алгоритмы, приложения. М.: Наука, 1986. 232 с.
  3. Левитас В.И. Большие упругопластические деформации материалов при высоком давлении. Киев: Наук. думка, 1987. 232 с.
  4. Быковцев Г.И., Шитиков А.В. // ДАН. 1990. Т. 311. № 1. С. 59–62.
  5. Буренин А.А., Ковтанюк Л.В. Упругие эффекты при интенсивном необратимом деформировании. Владивосток: Изд-во ДВГТУ, 2011. 280 с.
  6. Димитриенко Ю.И. Нелинейная механика сплошной среды. М.: Физматлит, 2009. 624 с.
  7. Бленд Д.Р. Нелинейная динамическая теория упругости. М.: Мир, 1972. 183 с.

Statistics

Views

Abstract - 198

PDF (Russian) - 137

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies