High excursions of Bessel process and other processes of Bessel type

Cover Page

Abstract

A high excursion probability for the modulus of a Gaussian vector process with independent identically distributed components is evaluated. It is assumed that the components have means zero and variances reaching its absolute maximum at a single point of the considered time interval. An important example of such processes is the Bessel process.

About the authors

V. I. Piterbarg

Lomonosov Moscow State University; Federal State Institution «Scientific Research Institute for System Analysis of the Russian Academy of Sciences»

Author for correspondence.
Email: piter@mech.math.msu.su
Russian Federation, 1, Leninskie gory, Moscow, 119991; 36-1, Nakhimovsky prospect, Moscow, 117218

I. V. Rodionov

Institute of Control Sciences of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: vecsell@gmail.com
Russian Federation, 65, Profsoyuznaya Street, Moscow, 117997; 9, Institutskij, Dolgoprudny, Moscow region, 141701

References

  1. Göing-Jaeschke A., Yor M. // Bernoulli. 2003. V. 9. № 2. P. 313-349.
  2. Revuz D., Yor M. Continuous Martingales and Brownian Motion. 2nd ed. B.: Springer Verlag, 1994. 636 p.
  3. Ширяев А. Н. Основы стохастической финансовой математики. Т. 1. Факты, Модели. М.: ФАЗИС, 1998. 512 c.
  4. Estrella A. // Economet. Theor. 2003. V. 19. № 6. P. 1128-1143.
  5. Kiefer J. // Ann. Math. Statist. 1959. V. 30. P. 420-447.
  6. Гихман И. И. // Теор. вер. примен. 1957. Т. 2. № 3. С. 380-384.
  7. Pitman J., Yor M. // Electronic J. Probability. 1999. V. 4. № 15. 35 p.
  8. De Long D. M. // Comm. Stat. Theor. Meth. A. 1981. V. 10. № 21. P. 2197-2213.
  9. Piterbarg V. I. Asymptotic Methods in the Theory of Gaussian Processes and Fields. Providence: AMS, 1996. 220 p.
  10. Shepp L. A. // Ann. Math. Statist. 1971. V. 42. № 3. P. 946-951.
  11. Жданов А. И., Питербарг В. И. // Теор. вер. примен. 2018. Т. 63. № 1. С. 3-28.
  12. Hashorva E., Ji L. // Extremes. 2015. V. 18. № 1. P. 37-64.
  13. Liu P., Ji L. // Stoch. Proc. Appl. 2017. V. 127. № 2. P. 497-525.
  14. Bingham N. H., Goldie C. M., Teugels J. L. Regular Variation. Cambridge: Cambridge Univ. Press, 1987. 510 p.

Statistics

Views

Abstract: 229

PDF (Russian): 133

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies