On the Kantorovich problems with a parameter

Cover Page

Cite item

Full Text

Abstract

We study measurable dependence of measures on a parameter in the Kantorovich optimal transportation problem with a parameter. Broad sufficient conditions are obtained for the existence of proper conditional measures measurably depending on a parameter in the case of parametric families of measures and mappings.

About the authors

V. I. Bogachev

Lomonosov Moscow State University; Higher School of Economics

Author for correspondence.
Email: vibogach@mail.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991; 20, Myasnitskaya str., Moscow, 101000

I. I. Malofeev

Lomonosov Moscow State University; St. Tikhons Orthodox University

Email: vibogach@mail.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991; 23/5a, Novokuznetskaya street, Moscow, 115184

References

  1. Богачев В. И., Колесников А. В. // УМН. 2012. Т. 67. № 5. С. 3-110.
  2. Rachev S. T., Rüschendorf L. Mass Transportation Problems. V. I, II. N.Y.: Springer, 1998.
  3. Villani C. Optimal Transport, Old and New. N.Y.: Springer, 2009.
  4. Dedecker J., Prieur C., Raynaud De Fitte P. // Parametrized Kantorovich-Rubinštein Theorem and Application to the Coupling of Random Variables. In: Dependence in Probability and Statistics // Lect. Notes Stat. 2006. V. 187. P. 105-121.
  5. Castaing C., Raynaud de Fitte P., Valadier M. Young Measures on Topological Spaces. With Applications in Control Theory and Probability Theory. Dordrecht: Kluwer, 2004.
  6. Zhang X. // Stochastics. 2013. V. 85. № 1. P. 71-84.
  7. Bogachev V. I. Measure Theory. V. 1, 2. Berlin: Springer, 2007.
  8. Bogachev V. I. Weak Convergence of Measures. Providence (R.I.): Amer. Math. Soc., 2018.
  9. Rao M. M. Conditional Measures and Applications. 2nd ed. Boca Raton (Fl): Chapman and Hall/CRC, 2005.
  10. Bogachev V. I., Malofeev I. I. // Potential Anal. 2016. V. 44. № 4. P. 767-792.
  11. Малофеев И. И. // ДАН. 2016. Т. 470. № 1. С. 13-17.
  12. Alekseev G. A., Yurova E. V. // Theory Stoch. Processes. 2017. V. 22. № 2. P. 1-7.
  13. Kuksin S., Nersesyan V., Shirikyan A. Exponential Mixing for a Class of Dissipative PDEs with Bounded Degenerate Noise. Arxiv 1802.03250v2.
  14. Blackwell D., Ryll-Nardzewski C. // Ann. Math. Statist. 1963. V. 34. P. 223-225.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences