On singular spectrum of finite dimensional perturbations (to the Aronszajn-Donoghue-Kac theory)

Cover Page

Cite item

Full Text

Abstract

The main results of the Aronszajn-Donoghue-Kac theory are extended to the case of n-dimensional (in the resolvent sense) perturbations à of an operator A0 = A0* defined on a Hilbert space H. Applying technique of boundary triplets we describe singular continuous and point spectra of extensions AB of a symmetric operator A acting in H in terms of the Weyl function M(·) of the pair {A, A0} and boundary n-dimensional operator B = B*. Assuming that the multiplicity of singular spectrum of A0 is maximal it is established orthogonality of singular parts Es and EsAo of the spectral measures E and EAo of the operators AB and A0, respectively. It is shown that the multiplicity of singular spectrum of special extensions of direct sums A = A(1)A(2) cannot be maximal as distinguished from multiplicity of the absolutely continuous spectrum. In particular, it is obtained a generalization of the Kac theorem on multiplicity of singular spectrum of Schrodinger operator on the line as well as its clarification. The multiplicity of singular spectrum of special extensions of direct sums A = A(1)A(2) are investigated. In particular, it is shown that it cannot be maximal as distinguished from multiplicity of the absolutely continuous spectrum. This result generalizes the Kac theorem on multiplicity of singular spectrum of Schrodinger operator on the line and clarifies it.

About the authors

M. M. Malamud

Peoples Friendship University of Russia

Author for correspondence.
Email: malamud3m@gmail.com
Russian Federation, 6, Miklukho-Maklaya street, Moscow, 117198

References

  1. Aronszajn N. // Amer. J. Math. 1957. V. 79. P. 597-610.
  2. Brasche J., Malamud M., Neidhardt H. // Int. Eq. Oper. Theory. 2002. V. 43. № 3. P. 264-289.
  3. Горбачук В. И., Горбачук М. Л. Граничные задачи для операторных дифференциальных уравнений. Киев: Наук. думка, 1984.
  4. Derkach V. A., Malamud M. M. // J. Funct. Anal. 1991. V. 95. P. 1-95.
  5. Derkach V. A., Hassi S., Malamud M. M., de Snoo H. // Meth. Funct. Anal. Topology. 2000. V. 6. № 3. P. 45-65.
  6. Donoghue W. // Communs Pure Appl. Math. 1965. V. 18. P. 559-576.
  7. Кац И. С. // Изв. АН СССР. 1963. Т. 27. № 5. С. 1081-1112.
  8. Kato T. Perturbation Theory for Linear Operators. B.; Heidelberg; N.Y.: Springer Verlag, 1966.
  9. Liaw C., Treil S. // Matrix Measures and Finite Rank Perturbations of Selfadjoint Operators. arXiv:1806. 08856v1, [Math.SP], 2018
  10. Маламуд М. М., Маламуд С. М. // Алгебра и анализ. 2003. Т. 15. № 3. С. 1-77.
  11. Malamud M. M., Neidhardt H. // J. Funct. Anal. 2011. V. 260. № 3. P. 613-638.
  12. Reed M., Simon B. // Methods of Modern Mathematical Physics. II. Functional Analysis. 2nd ed. N.Y.: Acad. Press, 1980.
  13. Рофе-Бекетов Ф. С. // Мат. сб. 1960. Т. 51. № 3. С. 293-342.
  14. Simon B., Wolff T. // Communs Pure Appl. Math. 1986. V. 39. P. 75-90.
  15. Simonov S., Worachek N. // Integr. Equat. Oper. Theory. 2014. V. 78. № 4. P. 523-575.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies