Effects of pinacidil and calcium on succinate-energized rat heart mitochondria in the presence of rotenone

Cover Page

Cite item

Full Text

Abstract

The effect of pinacidil was studied on calcium-loaded rat heart mitochondria (RHM) in the presence of succinate and rotenone. In experiments with pinacidil, the swelling of these mitochondria increased in media with NH4NO3 or K‑acetate, but the inner membrane potential DΨmito and state 3 or 2,4-dinitrophenol-uncoupled respiration of these organelles were decreased due to opening of the mitochondrial permeability transition pore in the inner membrane. These effects were inhibited by cyclosporin A and ADP. It was concluded that the protective effect of pinacidil in the cardiac muscle ischemia/reperfusion may be associated with stimulation mitochondrial swelling and a decrease in RHM calcium overload resulted in a decrease in DΨmito due to the soft uncoupling pinacidil effect.

About the authors

S. M. Korotkov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: korotkov@SK1645.spb.edu
Russian Federation, 44, Thorez prospekt, St.-Petersburg, 194223

I. V. Brailovskaya

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: korotkov@SK1645.spb.edu
Russian Federation, 44, Thorez prospekt, St.-Petersburg, 194223

V. P. Nesterov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: korotkov@SK1645.spb.edu
Russian Federation, 44, Thorez prospekt, St.-Petersburg, 194223

S. I. Soroko

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: korotkov@SK1645.spb.edu

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 44, Thorez prospekt, St.-Petersburg, 194223

References

  1. Коротков С. М., Емельянова Л. В., Брайловская И. В., Нестеров В. П. // ДАН. 2012. Т. 443. № 5. С. 632-636.
  2. Cheng Y., Debska-Vielhaber G., Siemen D. // FEBS Lett. 2010. V. 584. № 10. Р. 2005-2012.
  3. Halestrap A. P., Brenner C. // Curr. Med. Chem. 2003. V. 10. № 16. P. 1507-1525.
  4. Kowaltowski A. J., Seetharaman S., Paucek P., Garlid K. D. // Amer. J. Physiol. Heart. Circ. Physiol. 2001. V. 280. № 2. P. H649-H657.
  5. Costa A. D., Quinlan C. L., Andrukhiv A., et al. // Amer. J. Physiol. Heart. Circ. Physiol. 2006. V. 290. № 1. P. H406-H415.
  6. Ardehali H., O’Rourke B. // J. Mol. Cell. Cardiol. 2005. V. 39. № 1. P. 7-16.
  7. Hanley P. J., Mickel M., Löffler M., et al. // J. Physiol. 2002. V. 542. Pt 3. P. 735-741.
  8. Kopustinskiene D.M., Toleikis A., Saris N. E. // J. Bioenerg. Biomembr. 2003. V. 35. № 2. P. 141-148.
  9. Brustovetsky T., Shalbuyeva N., Brustovetsky N. // J. Physiol. 2005. V. 568. № 1. P. 47-59.
  10. Holmuhamedov E. L., Jovanović S., Dzeja P. P., et al. // Amer. J. Physiol. 1998. V. 275. № 5. P. H1567-H1576.
  11. Riess M. L., Camara A. K., Heinen A., et al. // J. Cardiovasc. Pharmacol. 2008. V. 51. № 5. P. 483-491.
  12. Crestanello J. A., Doliba N. M., Babsky A. M., et al. // J. Surg. Res. 2000. V. 94. № 2. P. 116-123.
  13. Lembert N., Idahl L. A., Ammon H. P. // Biochem. Pharmacol. 2003. V. 65. № 11. P. 1835-1841.
  14. Hausenloy D. J., Yellon D. M., Mani-Babu S., Duchen M. R. // Amer. J. Physiol. Heart. Circ. Physiol. 2004. V. 287. № 2. P. H841-H849.
  15. Kopustinskiene D. M., Jovaisiene J., Liobikas J., Toleikis A. // J. Bioenerg. Biomembr. 2002. V. 34. № 1. P. 49-53.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies