Effect of salicylic acid on the oxidative and photosynthetic processes in plants tomatoes by invasion with root-knot nematode Meloidogyne Incognita (Kofoid et White, 1919) Chitwood, 1949

Cover Page


A study of the processes of lipid peroxidation and the activity of the peroxidase enzyme, as well as photosynthetic pigments in susceptible tomato plants treated with salicylic acid (SA), during infection with the root-knot nematode Meloidogyne incognita. It was shown that in the roots of SA-treated plants, the activity of lipid peroxidation is higher compared to untreated ones, especially in the case of nematode invasion. A significant increase in the activity of lipid peroxidation in SA-treated invasive plants compared with untreated was noted during the transition of larvae to the sedimentary stage and the beginning of the formation of feeding places - giant cells (3-5 days after invasion). This, apparently, contributes to the inhibition of the development of the parasite and the reduction of plant infection, and also indicates the involvement of oxidative processes in the mechanism of the induced resistance of plants to root-knot nematodes. In the SA-treated plants, the qualitative and quantitative composition of photosynthetic pigments, disturbed by invasion, was restored and corresponded to the control level.

About the authors

Zh. V. Udalova

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Author for correspondence.
Email: udalova.zh@rambler.ru

Russian Federation, 33, Leninsky prospekt, Moscow, 119071

S. V. Zinovieva

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: zinovievas@mail.ru

Russian Federation, 33, Leninsky prospekt, Moscow, 119071


  1. Decraemer W., Hunt D.J. Structure and classification in Plant nematology. 2nd Ed. Perry R.N., Moens M., ed. (Wallingford; Oxfordshire: CAB International). 2013. P. 3-29.
  2. Melillo M.T., Leonetti P., Bongiovanni M., et al. //New Phytologist. 2006. V. 170. P. 501-512. doi.org/10.1111/j.1469-8137.2006.01724.x
  3. Melillo M.T., Leonetti P., Leone A., et al. // Europ. J. Plant Pathol. 2011. V. 130. P.489-502. doi: 10.1007/s10658-011-9768-4
  4. Козел Н.В. Шалыго Н.В. //Физиология растений. 2009. Т. 56. № 3. С. 351-358.
  5. Desikan R., Soheila A.-H.-Mackerness, Hancock J.T., Steven J. //Plant Physiol. 2001.V. 127. P. 159-172. doi: 10.1104/pp.127.1.159
  6. Herrera-Vásquez A., Salinas P., Holuigue L. // Front Plant. Sci. 2015. Mar. 19; 6:171. doi: 10.3389/fpls.2015.00171
  7. Zurbriggen M.D., Carrillo N., Hajirezaei M.-R. //Plant Signal Behav. 2010. V. 5. P. 393-396. doi: 10.4161/psb.5.4.10793/
  8. Nazar R., Iqbal N., Syeed S., et al. // J. Plant. Physiol. 2011.V. 168. P. 807-815. doi: 10.1016/j.jplph. 2010.11.001
  9. Зиновьева С.В., Удалова Ж.В., Васюкова Н.И. и др. // Изв. РАН. Сер. биол. 2011. № 5. C. 532-538.
  10. Кузнецов Вл.В., Кузнецов В.В., Романов Г.А. Молекулярно-генетические и биохимические методы в современной биологии растений. М.: БИНОМ. Лаборатория знаний. 2012. 487 с.
  11. Lichtenthaler H.K. //Methods Enzymol. 1987. V. 148. P. 350-382. http/doi.org/10.1016/0076-6879(87)48036-1.
  12. Gillet F.X., Bournaud C., Antonino de Souza Júnior J.D., et.al. // Ann Bot. 2017. 119(5)/ P. 775-789. doi: 10.1093/aob/mcw260
  13. Zacheo G., Bleve-Zacheo T., Pricolo G. // Nematol. medit. 1987. V. 15. P. 293-302.
  14. Wada M. // Plant Science. 2013. V. 210. P. 177-182. DOI: 0.1016/j.plantsci.2013.05.016 7
  15. Лаврова В.В., Зиновьева С.В., Удалова Ж.В. и др. // ДАН. 2016. Т. 476(4). Р. 466-470.



Abstract - 169

PDF (Russian) - 86


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies