Mathematical scattering theory in quantum waveguides

Cover Page

Cite item

Full Text

Abstract

A waveguide occupies a domain G with several cylindrical ends. The waveguide is described by a nonstationary equation of the form i∂t f = Af , where A is a selfadjoint second order elliptic operator with variable coefficients (in particular, for A = -Δ, where Δ stands for the Laplace operator, the equation coincides with the Schrodinger equation). For the corresponding stationary problem with spectral parameter, we define continuous spectrum eigenfunctions and a scattering matrix. The limiting absorption principle provides expansion in the continuous spectrum eigenfunctions. We also calculate wave operators and prove their completeness. Then we define a scattering operator and describe its connections with the scattering matrix.

About the authors

B. A. Plamenevskii

Saint-Petersburg State University

Author for correspondence.
Email: b.plamenevskii@spbu.ru
Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

A. S. Poretskii

Saint-Petersburg State University

Email: st036768@student.spbu.ru
Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

O. V. Sarafanov

Saint-Petersburg State University

Email: b.plamenevskii@spbu.ru
Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

References

  1. Nazarov S. A., Plamenevskii B. A. Elliptic Problems in Domains with Piecewise Smooth Boundaries. B.: Walter de Gruyter, 1994.
  2. Plamenevskii B. A., Poretskii A. S. Behavior of Waveguide Scattering Matrices in a Neighborhood of Thresholds // Saint Petersburg Mathematical Journal. 2019. V. 30. № 2. P. 285-319. doi: 10.1090/spmj/1543.
  3. Lyford W. C. Spectral Analysis of the Laplacian in Domains with Cylinders // Math Ann. 1975. V. 218. № 3. P. 229-251. doi: 10.1007/BF01349697.
  4. Lyford W. C. A Two Hilbert Space Scattering Theorem // Math. Ann. 1975. V. 217. № 3. P. 257-261. doi: 10.1007/BF01436177.
  5. Picard R., Seidler S. A Remark on Two-Hilbert-Space Scattering Theory // Math. Ann. 1984. V. 269. № 3. P. 411-415. doi: 10.1007/BF01450702.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences