Properties of extrema of estimates for middle derivatives of odd order in Sobolev classes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The embedding constants for the Sobolev spaces W2n[0;1]→Wk[0; 1], 0 ≤ kn - 1 are considered. The properties of the functions An,k(x) arising in the inequalities |f(k)(x)|≤An,k (x)││f||W2n[0;1], are studied. The extremum points of An;k are calculated for k = 3, 5 and all admissible n. The global maximum of these functions is found, and the exact embedding constants are calculated.

About the authors

T. A. Garmanova

Lomonosov Moscow State University

Email: iasheip@yandex.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

I. A. Sheipak

Lomonosov Moscow State University

Author for correspondence.
Email: iasheip@yandex.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

References

  1. Тихомиров В.М. Некоторые вопросы теории приближений. М.: Изд-во МГУ, 1976. 305 c.
  2. Stekloff W. Probléme de refroidissement d’une barre heterogéne // Ann. fac. sci. Toulouse. Sér. 2. 1901. V. 3. P. 281-313.
  3. Левин В.Я. О неравенствах. II. Об одном классе интегральных неравенств // Мат. сборник. 1938. Т. 4 (46). № 2. С. 309-324.
  4. Shmidt E. Über die Ungleichung, welche die Integrale über eine Potenz einer Function und über eine andere Potenz ihrer Ableitung verbindet // Math. Ann. 1940. V. 117. S. 301-326.
  5. Мукосеева Е.В., Назаров А.И. О симметрии экстремали в некоторых теоремах вложения // Зап. научн. сем. ПОМИ. 2014. Т. 425. С. 35-45.
  6. Калябин Г.А. Точные оценки для производных функций из классов Соболева Wr2 (-1; 1) // Тр. МИАН. 2010. Т. 269. С. 143-149.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences