Modeling of mineral parageneses and thermobarometry of metavolcanic rocks of the Ruker group in the southern Prince Charles Mountains, East Antarctica

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

There are diverse geological complexes that expose at Prince Charles Mountains and form the crystalline basement of the East Antarctic Platform. One of them is the Ruker Metasedimentary Group that is a part of the Palaeproterozoic-Neoproterozoic suprastructure of the Ruker Terrane and is divided into two sequences of metasedimentary and metavolcanic rocks, highly deformed and metamorphosed in greenschist facies. In order to estimate metamorphic conditions in this group, mineral and major element compositions of metavolcanic rocks were studied and isochemical phase diagram were calculated with the Theriak/Domino program. Mafic schists contain the mineral assemblage Chl—Ep—Ab—Qz—Ttn ± Act ± Bt ± Ms ± Cal that is typical of metabasites, and which varies with the bulk rock composition and ratio of components in a water-carbon dioxide fluid involved in phase reactions. The calculated mole fraction of CO2 in the fluid equilibrated with carbonate-bearing parageneses lies in a range between 0.13 and 0.27. The chloritoid schist is essentially composed of Cld, Chl, Ms, and Rt. It is debated whether this rock is genetically related to metamorphism of laterites derived from the basalts. Results of forward thermodynamic modeling, supplemented by chlorite-phengite thermobarometry, indicate that metamorphism of the Ruker Group occurred under conditions of high-P part of the greenschist facies (temperature 300—450 °C, pressure up to 7—8 kbar). These conditions significantly higher than the stable continental geotherm and is close to temperatures and pressures corresponding to those along the slow subduction geotherm. According to available geological data, the same geodynamic setting may have taken place in a course of the evolution of the Neoproterozoic intraplate sedimentary basin in connection with sinking of parts of the basement at large depth as a consequence of tectonic aggregation during the closure of the basin.

Full Text

Restricted Access

About the authors

Yuri Leonidovich Gulbin

Saint Petersburg Mining University

Author for correspondence.
Email: ygulbin@yandex.ru
Russian Federation, Saint Petersburg

Evgeniy Vitalievich Mikhalsky

VNIIOkeangeologia

Email: emikhalsky@mail.ru
Russian Federation, Saint Petersburg

References

  1. Bach W., Jöns N., Klein F. Metasomatism within the ocean crust. In: Metasomatism and the Chemical Transformation of Rock. Eds D. E. Harlov and H. Austrheim. Lecture Notes in Earth System Sciences. Springer-Verlag Berlin Heidelberg, 2012. P. 253-288.
  2. Baker L. L., Rember W. C., Sprenke K. F., Strawn D. G. Celadonite in continental flood basalts of the Columbia River Basalt Group. Amer. Miner. 2012. Vol. 97. P. 1284-1290.
  3. Baldwin J. A., Powell R., Brown M., Moraes R., Fuck R. A. Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anápolis-Itauçu Complex, central Brazil. J. Metamorph. Geol. 2005. Vol. 23. P. 511-523.
  4. Boger S. D., Wilson C. J. L., Fanning C. M. An Archaean province in the southern Prince Charles Mountains, East Antarctica: U-Pb zircon evidence for c. 3170 Ma granite plutonism and c. 2780 Ma partial melting and orogenesis. Precambrian Res. 2006. Vol. 145. P. 207-228.
  5. Bourdelle F., Parra T., Chopin C., Beyssac O. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib. Miner. Petrol. 2013. Vol. 165. P. 723-735.
  6. Bushmin S. A., Glebovitsky V. A. The scheme of mineral facies of metamorphic rocks. Zapiski RMO (Proc. Russian Miner. Soc.). 2008. No. 2. P. 1-13 (in Russian).
  7. Coggon R., Holland T. J. B. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J. Metamorph. Geol. 2002. Vol. 20. P. 683-696.
  8. De Capitani C., Petrakakis K. The computation of equilibrium assemblage diagrams with Theriak ⁄ Domino software. Amer. Miner. 2010. Vol. 95. P. 1006-1016.
  9. De Caritat P., Hutcheon I., Walshe J. L. Chlorite geothermometry: a review. Clays Clay Miner. 1993. Vol. 41. P. 219-239.
  10. Diener J. F. A., Powell R., White R. W., Holland T. J. B. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J. Metamorph. Geol. 2007. Vol. 25. P. 631-656.
  11. Dubacq B., Vidal O., De Anrade V. Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates. Contrib. Miner. Petrol. 2010. Vol. 159. P. 159-174.
  12. Efremova S. V., Stafeev K. G. Petrochemical methods of investigations of rocks. Moscow: Nedra, 1985. 511 p. (in Russian).
  13. Fedorov L. V., Tarutin O. A. Geology of the Ruker Mountain. In: Antarctica. Commission papers. No. 16. Moscow: Nauka, 1977. P. 93-99 (in Russian).
  14. Fitzsimons I. C. W. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens. Geology. 2000. Vol. 28. P. 879-882.
  15. Geology and mineral resources of Antarctica. Eds. V. L. Ivanov, E. N. Kamenev. Leningrad: Nauka, 1990. 242 p. (in Russian).
  16. Grapes R., Watanabe T. Paragenesis of titanite in metagreywackes of the Franz Josef-Fox Glacier area, Southern Alps, New Zealand. Eur. J. Miner. 1992. Vol. 4. P. 547-555.
  17. Gulbin Yu. L., Egorova K. V., Mikhalsky E. V., Tkacheva O. L., Galankina O. L. New data on the metamorphism of Neoproterozoic Sodruzhestvo Group in the Southern Prince Charles Mountains, East Antarctica. Zapiski RMO (Proc. Russian Miner. Soc.). 2015. No. 5. P. 15-32 (in Russian).
  18. Halpern M., Grikurov G. E. Rubidium-strontium data from the southern Prince Charles Mountains. Antarctic J. U. S. 1975. Vol. 10. P. 9-15.
  19. Harley S. L. Archaean-Cambrian crustal development of East Antarctica: Metamorphic characteristics and tectonic implications. In: Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Eds M. Yoshida, D. F. Windley, and S. Dasgupta. Geol. Soc. London Spec. Publ. 2003. Vol. 206. P. 203-230.
  20. Hashimoto M. Reactions producing actinolite in basic metamorphic rocks. Lithos. 1972. Vol. 5. P. 19-31.
  21. Hey M. H. A new review of chlorite. Miner. Mag. 1954. Vol. 30. P. 277-292.
  22. Holland T. J. B., Baker J. M., Powell R. Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. Europ. J. Miner. 1998. Vol. 10. P. 395-406.
  23. Holland T., Powell R. Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions. Amer. Miner. 1996. Vol. 81. P. 1425-1437.
  24. Holland T. J. B., Powell R. An internally consistent thermodynamic dataset for phases of petrological interest. J. Metamorph. Geol. 1998. Vol. 16. P. 309-344.
  25. Holland T. J. B., Powell R. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Miner. Petrol. 2003. Vol. 145. P. 492-501.
  26. Holmes M. A. Evidence for continuous and discontinuous alteration of DSDP hole 418A basalts and its significance to natural gamma-ray log readings. Proc. Ocean Drill. Prog. Sci. Res. 1988. Vol. 102. P. 135-149.
  27. Inoue A., Meunier A., Patrier-Mas P., Rigault C., Beaufort D., Vieillard P. Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays Clay Miner. 2009. Vol. 57. P. 371-382.
  28. Keller L. M., De Capitani C., Abart R. A quaternary solution model for white micas based on natural coexisting phengite-paragonite pairs. J. Petrol. 2005. Vol. 46. P. 2129-2144.
  29. Lanari P., Wagner T., Vidal O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: applications to P-T sections and geothermometry. Contrib. Miner. Petrol. 2014. Vol. 167. P. 968.
  30. Lanari P., Duesterhoeft E. Modeling metamorphic rocks using equilibrium thermodynamics and internally consistent databases: Past achievements, problems and perspectives. J. Petrol. 2019. Vol. 60. P. 19-56.
  31. Liou J. G., Chen P.-Y. Chemistry and origin of chloritoid rocks from eastern Taiwan. Lithos. 1978. Vol. 11. P. 175-187.
  32. Liou J. G., Maruyama S., Cho M. Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism. Miner. Mag. 1985. Vol. 49. P. 321-333.
  33. Mahar E. M., Baker J. M., Powell R., Holland T. J. B., Howell N. The effect of Mn on mineral stability in metapelites. J. Metamorph. Geol. 1997. Vol. 15. P. 223-238.
  34. Maruyama S., Liou J. G., Terabayashi M. Blueschists and eclogites of the world and their exhumation. Int. Geol. Rev. 1996. Vol. 38. P. 485-594.
  35. Mas A., Meunier A., Beaufort D., Patrier P., Dudoignon P. Clay minerals in basalt-hawaiite rocks from Mururoa Atoll (French Polynesia). I. Mineralogy. Clays Clay Miner. 2008. Vol. 56. P. 711-729.
  36. Massonne H.-J., Schreyer W. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib. Miner. Petrol. 1987. Vol. 96. P. 212-224.
  37. McLean M., Rawling T. J., Betts P. G., Phillips G., Wilson C. J. L. Three-dimensional inversion modelling of a Neoproterozoic basin in the southern Prince Charles Mountains. Tectonophysics. 2008. Vol. 456. P. 180-193.
  38. Mikhalsky E. V. Proterozoic geological complexes of East Antarctica: composition and origin. Saint Petersburg: VNIIOkeangeologiya, 2007. 131 p. (in Russian).
  39. Mikhalsky E. V., Sheraton J. W., Laiba A. A., Tingey R. J., Thost D. E., Kamenev E. N., Fedorov L. V. Geology of the Prince Charles Mountains. AGSO Geosci. Australia Bull. 247. Canberra, 2001. 210 p.
  40. Mikhalsky E. V., Henjes-Kunst F., Belyatsky B. V., Roland N. W., Sergeev S. A. New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications. Precambrian Res. 2010. Vol. 182. P. 101-123.
  41. Parra T., Vidal O., Agard P. A thermodynamic model for Fe-Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages. Contrib. Miner. Petrol. 2002. Vol. 143. P. 706-732.
  42. Phillips G., Wilson C. J. L., Fitzsimons I. C. W. Stratigraphy and structure of the Southern Prince Charles Mountains, East Antarctica. Terra Antartica. 2005. Vol. 12. P. 69-86.
  43. Phillips G., Wilson C. J. L., Campbell I. H., Allen C. M. U-Th-Pb detrital zircon geochronology from the southern Prince Charles Mountains, East Antarctica - defining the Archaean to Neoproterozoic Ruker province. Precambrian Res. 2006. Vol. 148. P. 292-306.
  44. Phillips G., Wilson C. J. L., Phillips D., Szczepanski S. K. Thermochronological (40Ar/39Ar) evidence of Early Palaeozoic basin inversion within the southern Prince Charles Mountains, East Antarctica: implications for East Gondwana. J. Geol. Soc. London. 2007. Vol. 164. P. 771-784.
  45. Phillips G., Kelsey D. E., Corvino A. F., Dutch R. A. Continental reworking during overprinting orogenic events, Southern Prince Charles Mountains, East Antarctica. J. Petrol. 2009. Vol. 50. P. 2017-2041.
  46. Predovsky A. F. Recunstruction of the conditions of sedimentogenesis and volcanism of the Early Precambrian. Leningrad: Nauka, 1980. 152 p. (in Russian).
  47. Ravich M. G., Soloviev D. S., Fedorov L. V. Geological structure of MacRobertson Land, East Antarctica. Leningrad: Gidrometeoizdat, 1978. 230 p. (in Russian).
  48. Rodrígues-Losada J. A., Martinez-Frias J., Bustillo M. A., Delgado A., Hernandez-Pacheco A., de la Fuente Krauss J. V. The hydrothermally altered ankaramite basalts of Punta Poyata (Tenerife, Canary Islands). J. Volcan. Geotherm. Res. 2000. Vol. 103. P. 367-376.
  49. Sanematsu K., Moriyama T., Sotouky L., Watanabe Y. Laterization of basalts and sandstone associated with the enrichment of Al, Ga and Sc in the Bolaven Plateau, southern Laos. Bull. Geol. Surv. Japan. 2011. Vol. 62. No. 3/4. P. 105-129.
  50. Scheffer C., Vanderhaeghe O., Lanari P., Tarantola A., Ponthus L., Photiades A., France L. Syn- to post-orogenic exhumation of metamorphic nappes: Structure and thermobarometry of the western Attic-Cycladic metamorphic complex (Lavrion, Greece). J. Geodynam. 2016. Vol. 96. P. 174-193.
  51. Sklarov E. V., Gladkochub D. P., Donskaya T. V., Mazukabzov A. M., Syzyh A. E., Bulanov V. A. Metamorphism and tectonics. Moscow: Intermet Engineering, 2001. 216 p. (in Russian).
  52. Vidal O., Goffé R., Bousquet R., Parra T. Calibration and testing of an empirical chloritoid-chlorite Mg-Fe exchange thermometer and thermodynamic data for daphnite. J. Metamorph. Geol. 1999. Vol. 17. P. 25-39.
  53. Vidal O., Parra T., Vieillard P. Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation. Amer. Miner. 2005. Vol. 90. P. 347-358.
  54. Vidal O., de Andrade V., Lewin E., Muñoz M., Parra T., Pascarelli S. P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). J. Metamorph. Geol. 2006. Vol. 24. P. 669-683.
  55. Vidal O., Lanari P., Muñoz M., Bourdelle F., de Andrade V. Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation. Clay Miner. 2016. Vol. 51. P. 615-633.
  56. White R. W., Powell R., Holland T. J. B., Worley B. A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J. Metamorph. Geol. 2000. Vol. 18. P. 497-511.
  57. White R. W., Powell R., Phillips G. N. A mineral equilibria study of the hydrothermal alteration in mafic greenschist facies rocks at Kalgoorlie, Western Australia. J. Metamorph. Geol. 2003. Vol. 21. P. 455-468.
  58. White R. W., Powell R., Holland T. J. B. Progress relating to calculation of partial melting equilibria for metapelites. J. Metamorph. Geol. 2007. Vol. 25. P. 511-527.
  59. Whitney D. L., Evans B. W. Abbreviations for names of rock-forming minerals. Amer. Miner. 2010. Vol. 95. P. 185-187.
  60. Wiewióra A., Weiss Z. Crystallochemical classification of phyllosilicates based on the unified system of projection of chemical composition. II. The chlorite group. Clay Miner. 1990. Vol. 25. P. 83-92.
  61. Yui T.-F., Wu T.-W., Wang Y., Lo C.-H., Lu C.-Y. Evidence for submarine weathering from metamorphosed weathering profiles on basaltic rocks, Tananao Metamorphic Complex, Taiwan. Chem. Geol. 1994. Vol. 118. P. 185-202.
  62. Yui T.-F., Okamoto K., Usuki T. Lan C. Y., Chu H. T., Liou J. G. Late Triassic-Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China - evidence from zircon SHRIMP dating. Int. Geol. Rev. 2009. Vol. 51. P. 304-328.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The general tectonic setting of the region (A) and the geological scheme of the Ruker Mountain (Б) which was drawn using unpublished data from A. A. Laiba.

Download (206KB)
3. Fig. 2. Diagrams of Moine and La Roche (Efremova, Stafeev, 1985) (а) and Predovsky (1980) (б) to determine the protolith of metamorphic rocks.

Download (143KB)
4. Fig. 3. Isochemical phase diagram computed for sample 48165-22 in the NCKFMASHTC system.

Download (138KB)
5. Fig. 4. Isochemical phase diagram computed for sample 48163-1 in the NCKFMASHTC system. Blue lines are isopleths of Si (apfu) in white mica. The rose area indicates most likely P—T conditions for the peak metamorphism.

Download (210KB)
6. Fig. 5. Isochemical phase diagram computed for sample 48165-21 in the NCKFMASHT system. Blue lines are isopleths of Si (apfu) in white mica.

Download (197KB)
7. Fig. 6. Isochemical phase diagram computed for sample 48164-4 in the MnNCKFMASHT system. Blue lines are isopleths of Si (apfu) in white mica, green lines are isopleths of XMg in chloritoid.

Download (166KB)
8. Fig. 7. Results of forward thermodynamic modeling and mineral thermobarometry data for metavolcanic rocks of the Ruker Group. Blue dashed lines are isopleths of Si (apfu) in white mica, calculated with the phengite (Massonne, Schreyer, 1987) geobarometer and the chlorite (Lanary et al., 2014) geothermometer.

Download (60KB)

Copyright (c) 2019 Russian academy of sciences