Pre-nucleation clusters and non-classical crystal formation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Peculiarities of the non-classical mechanism of the crystal nucleation, associated with the formation of stable prenucleus intermediate phase clusters in a crystal-forming medium, are considered. These clusters (quatarons) represent primary protomineral particles for which crystallization is one of the possible evolutionary scenarios. Conditions of the quataron formation and their characteristic properties are discussed. The relevance of experiments on direct observation of prenucleus clusters and other objects of the protomineral world is presented.

Full Text

Restricted Access

About the authors

Askhab Magomedovich Askhabov

Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: askhabov@geo.komisc.ru
ORCID iD: 0000-0003-2323-9957
SPIN-code: 5872-4941

RAS Academician, Chief Researcher of the Laboratory of Experimental Mineralogy, Institute of Geology

Russian Federation, 167982, Komi Republic, Syktyvkar, Pervomayskaya, 54

References

  1. Askhabov A. M. Cluster (quatarone) self-organization of matter at the nanoscale level and the formation of crystalline and non-crystalline materials. Zapiski RMO (Proc. Russian Miner. Soc.). 2004. Vol. 133. No. 4. P. 108-123 (in Russian).
  2. Askhabov A. M. Aggregation of quatarons as a formation mechanism of amorphous spherical particles. Doklady Earth Sci. 2005. Vol. 400. No. 1. P. 937-940.
  3. Askhabov A. M. Quatarone model of the formation of fullerenes. Phys. Solid. 2005. Vol. 47. No. 6. P. 1147-1150 (in Russian).
  4. Askhabov A. M. Quataron concept: main ideas, some applications. Proc. Komi Science Center UB RAS. 2011. No. 3(7). P. 70-77 (in Russian).
  5. Askhabov A. M. Quataron nature of the nonclassical mechanism of crystal nucleation and growth. Vestnik IG Komi UB RAS. 2015. No. 4. P. 3-7.
  6. Askhabov A. M. Micro- and nanoblock crystal growth. Vestnik IG Komi SC UD RAS. 2016. No. 5(257), P. 13-18 (in Russian).
  7. Askhabov A. M. Quataron models of nucleation and growth of crystals. Zapiski RMO (Proc. Russian Miner. Soc.) 2016. No. 5. P. 17-24 (in Russian).
  8. Askhabov A. M. A new stage of the mineralogical invasion of the «world of neglected values»: the discovery of the protomineral world. In: Proc. Jubilee Congr. Russian Miner. Society «200th Anniversary of the Russian Mineralogical Society». Saint Petersburg: LEMA, 2017. Vol. 2. P. 3-5 (in Russian).
  9. Askhabov A. M. Mineralogy in the «world of neglected values». In: Modern problems of theoretical, experimental and applied mineralogy (Yushkin readings - 2018). Syktyvkar: IG Komi SC UB RAS, 2018. P. 7-8 (in Russian).
  10. Askhabov A. M. New cluster concept of crystal formation. Crystallogr. Rep. 2018. Vol. 63. No. 7. P. 1195-1199.
  11. Askhabov A. M., Ryazanov M. A. Clusters of «hidden» phase - quatarons and nucleation. Doklady Earth Sci. 1998. Vol. 362, No. 5. P. 630-633 (in Russian).
  12. Bergström L., Sturm E. V., Salazar-Alvarez G. Mesocrystals in biominerals and colloidal arrays. Ace. Chem. Res. 2015. Vol. 48. P. 1391-1402.
  13. Cerreta M. K., Berglund K. A. The structure of aqueous solutions of some dihidrogen orthophosphates by laser Raman spectroscopy. J. Crystal Growth. 1987. Vol. 84. P. 577-588.
  14. Cölfen H., Antonietti M. Mesocrystals and nonclassical crystallization. Chichester: Wiley, 2008. 296 p.
  15. Demichelis R., Raiteri P., Gale Y. D., Quigley D., Gebauer D. Stable prenucleation mineral clusters are liquid-like ionic polymers. Nature Communications. 2011. Vol. 2. P. 590.
  16. Dyakova Yu. A., Ilina K. B., Konarev P. V. et al. Investigation of the conditions for the formation of protein crystal growth units in lysozyme solutions by small-angle X-ray scattering. Cryst. Rep. 2017. Vol. 62. No. 3. P. 364-369.
  17. Fedorov P. P., Ivanov V. K., Osiko V. V. The main laws and scenarios of crystal growth by the mechanism of oriented nanoparticle splicing. Doklady Earth Sci. 2015. Vol. 465. No. 3. P. 290-292 (in Russian).
  18. Galiulin R. V. Crystallographic geometry. Moscow: Nauka, 1984. 135 p. (in Russian).
  19. Gebauer D., Gölfen H. Prenucleation clusters and non-classical nucleation. Nano Today. 2011. No. 6. P. 564-584.
  20. Gebauer D., Völkel A., Gölfen H. Stable prenucleation calcium carbonate clusters. Science. 2008. Vol. 322. P. 1819-1822.
  21. Greer Heather F., Yu Fend Jiao, Zhou Wu Zong. Early stages of non-classic crystal growth. Sci. China. Chemistry. 2011. Vol. 54. No. 12. P. 1867-1876.
  22. Grigoriev D. P. Ontogeny of minerals. Lviv: Lviv University, 1961. 284 p. (in Russian).
  23. Grizdale R. O. Crystal growth from molecular complexes. Theory and practice of growing crystals. 1968. P. 176-190 (in Russian).
  24. Ilyushin G. D. Simulation of self-organization processes in crystal-forming systems. Moscow: Editorial URSS, 2003. 376 p. (in Russian).
  25. Ilyushin G. D., Blatov V. A. Symmetry and topological code of cluster self-assembly of frame mt-structures of AlPO4(H2O)2 (metavariscite and variscite) aluminophosphates and Al2(PO4)2(H2O)3 (APC). Cryst. Rep. 2017. Vol. 62. No. 2. P. 174-184.
  26. Kashchiev D. Nucleation: Basic theory with applications. Oxford: Butterworth-Heinemann, 2000. 530 p.
  27. Kovalchuk M. V., Blagov A. E., Dyakova Y. A. et al. Investigation of the initial crystallization stage in lysozyme solutions by small-angle x-ray scattering. Cryst. Growth Des. 2016. Vol. 16. No. 4. P. 1792-1797.
  28. Kovalchuk M. V., Alekseeva O. A., Blagov A. E., Ilyushin G. D., Ilina K. B., Konarev P. V., Lomonov V. A., Pisarevsky Yu. V., Peters G. S. Investigation of the structure of crystal-forming solutions of potassium dihydrophosphate K (H2PO4) (type KDP) on the basis of modeling cluster precursors and according to small-angle X-ray scattering data. Cryst. Rep. 2019. Vol. 64. No. 1. P. 6-10.
  29. Krivovichev S. V. Theory of regular systems of points and partitions of space. On the R-properties of regular systems of points. Cryst. Rep. 1999. Vol. 44. No. 2. P. 165-171.
  30. Krivovichev S. V., Gurzhiy V. V., Tananaev I. G., Myasoedov B. F. Microscopic model of crystallogenesis from aqueous solutions of uranyl selenite. Zapiski RMO (Proc. Russian Miner. Soc.). Spec. Issue «Crystallogenesis and mineralogy». 2007. P. 91-114 (in Russian).
  31. Mutaftschiev B. Nucleation. In: Handbook of Crystal Growth. Hurle D. T. J. (Ed.) Amsterdam: Elsevier, 1993. 1218 p.
  32. New Perspectives on mineral nucleation and growth. From solution precursors to solid materials / E. S. Alexander, V. Driessche, M. Kellermeier, L. G. Benning, D. Gebauer (Eds). Springer, 2017. 380 p.
  33. Ostwald W. Die Welt der vernachlässigten Dimensionen. Dresden and Leipzig: Theodor Steinkopff, 1927. 219 s.
  34. Pouget E. M., Bomans P. H. H., Dey A. et. al. The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM. Science. 2010. Vol. 323. P. 1455-1458.
  35. Reiss H., Frisch H., Hefland E., Lebowitz L. Aspects of the statistical thermodynamic of read fluids. J. Chem. Phys. 1960. Vol. 32. No. 1. P. 119-124.
  36. Rusli T. T., Frisch H. L., Hefland E., Lebowitz J. L. Raman spectroscopic study of NaNO3 solution system - solution clustering in supersaturated solution. J. Crystal Growth. 1989. Vol. 97. P. 345-351.
  37. Sheftal N.N. On the issue of real crystal formation. In: Crystal growth. Reports at the first meeting on the growth of crystals. Moscow: USSR Acad. Sci, 1957. P. 5-31 (in Russian).
  38. Stransky I. N., Kaishev R. Theory of crystal growth and the formation of crystalline nuclei. Uspekhi Fizicheskikh Nauk. 1939. Vol. 21. No. 4. P. 408-465 (in Russian).
  39. Treivus E. B. Thermodynamics of homogeneous nucleation of crystals. Cryst. Rep. 2002. Vol. 47. No. 6. P. 1072-1076.
  40. Tsvetkov E. G., Kidyarov B. I. Nanoscale crystallogenesis stages from the liquid phase. Zapiski RMO (Proc. Russian Miner. Soc.). Spec. issue «Crystallogenesis and mineralogy». 2007. P. 66-76 (in Russian).
  41. Vekilov P. G. Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst. Growth Des. 2004. Vol. 4. P. 671-685.
  42. Vekilov P. G. The two-step mechanism of nucleation of crystals in solution. Nanoscale. 2010. Vol. 2. P. 2346-2357.
  43. Zhou W. Z. Reversed crystal growth: Implications for crystal engineering. Adv. Mother. 2010. Vol. 22. P. 3086-3092.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Two-stage nucleation scheme.

Download (20KB)
3. Fig. 2. Quatarons as primary particles in the protomineral world.

Download (90KB)

Copyright (c) 2019 Russian academy of sciences