Minerals of the chevkinite group in differentiated basic-ultrabasic intrusions from western slope of the Southern Urals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A detailed study of differentiated intrusions of the Misaelga complex located in the Taratash metamorphic block for the first time in the Urals revealed rare-earth mineralization represented by minerals of the chevkinite group. It has been established that during the process of crystallization differentiation at the final stages of the formation of the massif, the alkalinity and alumina content of the last portions of the melt increase, at which the formation of perrierite-(Ce) mineralization becomes possible in the temperature range from ~800 °C to ~1050 °C and partial pressure of oxygen lgfO2 = –12 .7.

Full Text

Restricted Access

About the authors

S. G. Kovalev

Ufa Federal Research Centre RAS

Email: kovalev@ufaras.ru

Institute of Geology

Russian Federation, Ufa

S. S. Kovalev

Ufa Federal Research Centre RAS

Email: kovalev@ufaras.ru

Institute of Geology

Russian Federation, Ufa

A. A. Sharipova

Ufa Federal Research Centre RAS

Author for correspondence.
Email: kovalev@ufaras.ru

Institute of Geology

Russian Federation, Ufa

References

  1. Alekseev A.A. Ripheikso-Vendian magmatism of the western slope of the Southern Urals. Moscow: Nauka, 1984. 136 p. (in Russian).
  2. Bagińsk B., Macdonald R. The chevkinite group: underestimated accessory phases from a wide range of parageneses. Mineralogia. 2013. Vol. 44. N 2-3. P. 3—18.
  3. Belkin H.E., Macdonald R., Grew E.S. Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India. Miner. Mag. 2009. Vol. 73(1). P. 149—164.
  4. Bulakh A.G. Guide and tables for calculating mineral formulas. Moscow: Nedra, 1967. 141 p. (in Russian).
  5. Domańska-Siuda J., Nejbert K., Bagiński B., Macdonald R., Kotowski J., Stachowicz M. Chevkinite-group minerals in selected intrusions of the Mazury Complex, North-Eastern Poland: insights into the formation of a titanite-like phase by hydrothermal alteration. Miner. Petrol. 2022. Vol. 116. N 2. P. 105—119.
  6. Green T.H. and Pearson N.J. Experimental crystallization of chevkinite/perrierite from REE enriched silicate liquids at high pressure and temperature. Miner. Mag. 1988. N 52. P. 113—120.
  7. Huebner J.S, Sato M. The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers. Amer. Miner. 1970. Vol. 55. P. 934—952.
  8. Kovalev S.G. New data on the geochemistry of diabase-picrite magmatism of the western slope of the Southern Urals and the conditions of its formation. Litosfera. 2011. N 2. P. 68—83 (in Russian).
  9. Kovalev S.G., Kovalev S.S. Conditions and mechanisms for the formation of sulfide-oxide mineralization during melt differentiation in an intermediate chamber (on the example of the intrusion of the western slope of the Southern Urals). Geol. Ore Deposits. 2021. Vol. 63. N 6. P. 551—575 (in Russian).
  10. Kovalev S.G., Kovalev S.S. First data on Th–REE mineralization in mafic-ultrabasic igneous rocks of the western slope of the Southern Urals. Georesources. 2023. Vol. 25. N 1. P. 95—107 (in Russian).
  11. Krivovichev V.G., Gulbin Yu.L. Recommendations for the calculation and presentation of mineral formulas based on chemical analysis data. Zapiski RMO (Proc. Russian Miner. Soc.). 2022. Vol. 151. N 1. P. 114—124 (in Russian).
  12. Lepage L.D. ILMAT: an excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Comput. Geosci. 2003. Vol. 29. N 5. P. 673—678.
  13. Lindsley D.H., Spencer K.J. Fe-Ti oxide geothermometry: Reducing analyses of coexisting Ti-magnetite (Mt) and ilmenite (Ilm). American Geophysical Union. 1982. Vol. 63. N 18. P. 471.
  14. Macdonald R., Bagiński B., Belkin H.E., Stachowicz M. Composition, paragenesis, and alteration of the chevkinite group of minerals. Amer. Miner. 2019. Vol. 104. P. 348—369.
  15. Macdonald R., Bagiński B., Kartashov P.M., Zozulya D., Dzierżanowski P., Jokubauskas P. Hydrothermal alteration of a chevkinite-group mineral to a bastnäsite-(Ce)-ilmenite- columbite-(Fe) assemblage: interaction with a F-, CO2-rich fluid. Miner Petrol. 2015. Vol. 109. N 6. P. 659—678.
  16. Macdonald R., Belkin H.E. Compositional variation in minerals of the chevkinite group. Miner. Mag. 2002. Vol. 66(6). P. 1075—1098.
  17. Muhling J.R., Suvorova A.A., Rasmussen B. The occurrence and composition of chevkinite-(Ce) and perrierite-(Ce) in tholeiitic intrusive rocks and lunar mare basalt. Amer. Miner. 2014. Vol. 99. P. 1911—1921.
  18. Nosova A.A., Sazonova L.V., Kargin A.V., Larionova Yu.O., Gorozhanin V.M., Kovalev S.G. Mesoproterozoic intraplate igneous province of the Western Urals: main petrogenetic types of rocks and their origin. Petrology. 2012. Vol. 20. N 4. P. 392—428 (in Russian).
  19. Sazonova L.V., Nosova A.A., Larionova Yu.O., Kargin A.V., Kovalev S.G. Mesoproterozoic picrites of the eastern margin of the East European Platform and the Bashkirian meganticlinorium: petrogenesis and compositional features of olivine and clinopyroxene. Litosfera. 2011. N 3. P. 64—83 (in Russian).
  20. Spiridonov E.M., Filimonov S.V., Semikolennyh E.S., Korotaeva N.N., Krivitskaya N.N. Chevkinite-(Ce) and perrierite-(Ce) from island-arc quartz gabbro-norite-dolerites of the Ayu-Dag intrusion, Mountainous Crimea. Zapiski RMO (Proc. Russian Miner. Soc.). 2019. Vol. 148. N 4. P. 61—79 (in Russian).
  21. Troll V.R., Sachs P.M., Schmincke H.U., Sumita M. The REE-Ti mineral chevkinite in comenditic magmas from Gran Canaria, Spain: a SYXRF-probe study. Contrib. Miner. Petrol. 2003. Vol. 145. P. 730—741.
  22. Vlach S.R.F., Gualda G.A.R. Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos. 2007. Vol. 97. P. 98—121.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural scheme of the Urals (a), geological schemes of the Taratash complex (б) and the «Magnitny» site with rock bodies of the Misaelga complex (в). Megazones of the Urals: 1 — Cis-Urals; 2 — West Ural, 3 — Central Ural, 4 — Tagil, 5 — Magnitogorsk, 6 — East Ural; 7 — deposits of the Ai Formation (RF1); 8 — undivided Archean-Proterozoic deposits; 9 — tectonic zones with blastomylonites; 10 — uneven-aged mafic dikes; 11 — migmatites; 12 — garnet-biotite gneisses; 13 — layered bodies of the Misaelga.

Download (610KB)
3. Fig. 2. Cross section and thin sections of rocks of the Misaelga Complex. 1 — olivine, 2 — clinopyroxene, 3 — orthopyroxene, 4 — plagioclase, 5 — ore minerals.

Download (657KB)
4. Fig. 3. Micrographs of chevkinite group minerals in rocks of the Misaelga complex. chv — minerals of the chevkinite group, all — allanite, amf — amphibole, bi — biotite, ttn — titanite, mgt — magnetite, ilm — ilmenite, pl — plagioclase (oligoclase), q — quartz.

Download (159KB)
5. Fig. 4. T–log fO2 diagram for intergrowths and exsolution microstructures of ilmenite and titanomagnetite from rocks of the Misaelga Complex. 1 — minerals of the gabbro horizon; 2 — minerals of the picrite horizon. HM and MW buffers after (Myers, Eugster, 1983), QFM buffer after (Berman, 1988), NNO buffer after (Huebner, Sato, 1970).

Download (120KB)

Copyright (c) 2024 Russian Academy of Sciences