Antimonian mineralization and sequence of the mineral formation in nonsulfide endogeneous Pb–Zn–Sb ores of the Pelagonian massif, Republic of North Macedonia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The mineralogy and behavior of antimony in sulfide-free ore-bearing metasomatites of the Pelagonian massif (the so-called Nežilovo-type ores) were studied. Based on the data on the morphological features of ore minerals (primarily Sb-containing) and the zoning of their individuals, as well as using data obtained by the authors earlier, four stages of mineral formation were identified for the first time within the metasomatic stage of ore formation, during which mineral associations with oxygen compounds of chalcophile elements (Sb, As, Zn, Pb, Cu) sequentially formed.

Texto integral

Acesso é fechado

Sobre autores

V. Ermolaeva

Institute of Experimental Mineralogy RAS

Autor responsável pela correspondência
Email: cvera@mail.ru
Rússia, Chernogolovka, Moscow obl.

N. Chukanov

Federal Research Center of Problems of Chemical Physics and Medicinal RAS; Moscow State University

Email: cvera@mail.ru

Faculty of Geology

Rússia, Chernogolovka, Moscow obl.; Moscow

D. Varlamov

Institute of Experimental Mineralogy RAS

Email: cvera@mail.ru
Rússia, Chernogolovka, Moscow obl.

S. Jančev

Saints Cyril and Methodius University

Email: cvera@mail.ru

Faculty of Technology and Metallurgy

Macedônia, Skopje

Bibliografia

  1. Armbruster Th., Bermanec V., Zebec V., Oberhänsli R. Titanium and iron poor zincohögbomite-16H, Zn14(Al, Fe3+, Ti, Mg)8Al24O62(OH)2, from Nezilovo, Macedonia: occurrence and crystal structure of a new polysome. Schweiz. Mineral. Petrogr. Mitt. 1998. Vol. 78. P. 469—477.
  2. Armbruster T. Revised nomenclature of högbomite, nigerite, and taaffeite minerals. Eur. J. Miner. 2002. Vol. 14. P. 389—395.
  3. Arsovski M., Dumurdzanov N. Recent findings of the structure of the Pelagonian antidinorium and its relation with the Rhodopean and Serbian Macedonian Massif. Geologica Macedonica. 1984. Vol. 2. P. 15—22.
  4. Aydoğan S., Aras A., Uçar G., Erdemoğlu M. Dissolution kinetics of galena in acetic acid solutions with hydrogen peroxide. Hydrometallurgy. 2007. Vol. 89. Issues 3—4. P. 189—195.
  5. Barić L., Ivanov T. Mineralvergesellschaftung in der Umgebung des Dorfes Nežilovo am Jakupica-Gebirge in Mazedonien, Bull. Sci., Zagreb. 1960. Vol. 5. P. 2—4.
  6. Bermanec V., Holtstam D., Sturman D., Criddle A. J., Back M. E., Scavnicar S. Nezilovite, a new member of the magnetoplumbite group, and the crystal chemistry of magnetoplumbite and hibonite. Canad. Miner. 1996. Vol. 34. P. 1287—1297.
  7. Bermanec M., Chukanov N. V., Boev I., Šturman B. D., Zebec V., Bermanec V. Ardennite-bearing mineral association related to sulfide-free ores with chalcophile metals at Nežilovo, Pelagonian Massif, North Macedonia. Eur. J. Miner. 2021. Vol. 33. N 4. P. 433—445.
  8. Bermanec M., Chukanov N. V., Varlamov D. A., Rajačič A., Jančev S., Ermolaeva V. N. Sulfide anomaly related to cymrite-quartz schist of the Kalugeri area, Pelagonian massif, Republic of North Macedonia. J. Geosci. 2023. Vol. 68. N 4. P. 301—311.
  9. Cama J., Aero P., Ayora C., Lobo A. Galena surface reactivity at acidic pH and 25 °C based on flow-through and in situ AFM experiments. Chem. Geol. 2004. Vol. 214. N 3—4. P. 309—330.
  10. Chiriţă P. Galena oxidation in oxygen-bearing acidic solutions. ACS Earth and Space Chemistry. 2019. Vol. 3. N 11.
  11. Chukanov N. V., Varlamov D. A., Nestola F., Belakovskiy D. I., Goettlicher J., Britvin S. N., Lanza A., Jancev S. Piemontite-(Pb), CaPbAl2Mn3+[Si2O7][SiO4]O(OH), a new mineral species of the epidote supergroup. N. Jahrb. Mineral. Abh. 2012. Vol. 189. N 3. P. 275—286.
  12. Chukanov N. V., Jančev S., Pekov I. V. The association of oxygen-bearing minerals of chalcophile elements in the orogenetic zone related to the “mixed series” complex near Nežilovo, Republic of Macedonia. Macedonian J. Chem. Chem. Eng. 2015. Vol. 34. N 1. P. 115—124.
  13. Chukanov N. V., Aksenov S. M., Jančev S., Pekov I. V., Göttlicher J., Polekhovsky Yu.S., Rusakov V. S., Nelyubina Yu.V., Van K. V. A new mineral species ferricoronadite, Pb[Mn4+6(Fe3+, Mn3+)2]O16: mineralogical characterization, crystal chemistry and physical properties. Phys. Chem. Miner. 2016. Vol. 43. N 7. P. 503—514.
  14. Chukanov N. V., Zubkova N. V., Schäfer C., Varlamov D. A., Ermolaeva V. N., Polekhovsky Yu.S., Jančev S., Pekov I. V., Pushcharovsky D. Yu. New data on ferriakasakaite-(La) and related minerals extending the compositional field of the epidote supergroup. Eur. J. Miner. 2018a. Vol. 30. N 2. P. 323—332.
  15. Chukanov N. V., Krzhizhanovskaya M. G., Jančev S., Pekov I. V., Varlamov D. A., Göttlicher J., Rusakov V. S., Polekhovsky Yu.S., Chervonnyi A. D., Ermolaeva V. N. Zincovelesite-6N6S, Zn3(Fe3+, Mn3+, Al, Ti)8O15(OH), a new högbomite-supergroup mineral from Jacupica mountains, Republic of Macedonia. Miner. Petrol. 2018b. Vol. 112. N 5. P. 733—742.
  16. Chukanov N. V., Vorobei S. S., Ermolaeva V. N., Varlamov D. A., Plechov P. Y., Jančev S., Bovkun A. V. New data on chemical composition and vibrational spectra of magnetoplumbite-group minerals. Geol. Ore Deposits. 2019. Vol. 61. N 7. P. 637—646.
  17. Chukanov N. V., Zubkova N. V., Jančev S., Pekov I. V., Ermolaeva V. N., Varlamov D. A., Belakovskiy D. I., Britvin S. N. Zinc-rich and copper-bearing amphiboles from sulfide-free ore occurrences of the Pelagonian massif, Republic of North Macedonia. Miner. Petrol. 2020a. Vol. 114. P. 129—140.
  18. Chukanov N. V., Varlamov D. A., Ermolaeva V. N., Jančev S. Role of barium in the formation of sulfide-free ores with chalcophile elements in the “Mixed series” of the Pelagonian massif. Zapiski RMO (Proc. Russian Miner. Soc.). 2020b. Vol. 149. N 1. P. 96—107 (in Russian).
  19. Chukanov N. V., Gridchina V. M., Rastsvetaeva R. K., Varlamov D. A., Kasatkin A. V., Pekov I. V., Vigasina M. F., Virus A. A., Jančev S., Britvin S. N. Zincorinmanite-(Zn), ZnSb(Fe3+2Zn)O7(OH), a new nolanite-supergroup mineral. Miner. Mag. (in press).
  20. Ermolaeva V. N., Chukanov N. V., Jančev S., Van K. Endogenic oxide parageneses with chalcophile elements in the orogenetic zone related to the “Mixed Series”of the Pelagonian massif, Republic of Macedonia. New Data on Minerals. 2016. Vol. 51. P. 12—19 (in Russian).
  21. Ermolaeva V. N., Varlamov D. A., Jančev S., Chukanov N. V. Spinel- and högbomite-supergroup minerals from sulfide-free endogenic Pb–Zn–Sb–As assemblage in Pelagonian Massif, Republic of North Macedonia. Geol. Ore Deposits. 2019a. Vol. 61. N 7. P. 628—636.
  22. Ermolaeva V. N., Varlamov D. A., Chukanov N. V., Jančev S. Forms of arsenic concentration in sulfide-free endogenic Pb–Zn–Sb ores of the Pelagonian massif, Republic of North Macedonia. Geol. Ore Deposits. 2019b. Vol. 61. N 8. P. 782—790.
  23. Holtstam D., Gatedal K., Söderberg K., Norrestam R. Rinmanite, Zn2Sb2Mg2Fe4O14(OH)2, a new mineral species with a nolanite-type structure from the Garpenberg Norra mine, Dalarna, Sweden. Canad. Miner. 2001. Vol. 39. P. 1675—1683.
  24. Ivanov T., Jancev S. “Nežilovo” — a complex polymetallic deposit of “Franklin Furnace” type in Macedonia. Proc. Jogoslavian Geol. Congress 5, Ljubljana, 1976. P. 69—78.
  25. Jančev S. Zn-rich pyroxenes from the occurrences in the mixed series in the upper part of the Babuna River, Macedonia. Geologija (Ljubljana). 1997. Vol. 40. P. 283—289.
  26. Johnson C. A., Piatak N. M., Miller M. M. Critical Mineral Resources of the United States —Economic and Environmental Geology and Prospects for Future Supply. U. S. Geological Survey, Reston, Virginia. Ed. K. J. Schulz, J. H. DeYoung, Jr., R. R. Seal II, and D. C. Bradley. 2017.
  27. Majer V., Mason R. High-pressure metamorphism between the Pelagonian massif and Vardar ophiolite belt, Yugoslavia. Miner. Mag. 1983. Vol. 47. P. 139—141.
  28. Rastsvetaeva R. K., Gridchina V. M., Varlamov D. A., Jancev S. Crystallochimical features of Ti- and Sb-rich nezilovite. Crystallography Reports. 2023a. Vol. 58. N 4. P. 575—580.
  29. Rastsvetaeva R. K., Gridchina V. M., Varlamov D. A., Chukanov N. V., Jancev S. Crystal structure model of a potentially new mineral: Zn, Fe, Mn, Sb-analog of magneziohögbomite-2N3S. Crystallography Reports. 2023b. Vol. 68. N 7. P. 1073—1078.
  30. Varlamov D. A., Ermolaeva V. N., Jančev S., Chukanov N. V. Oxides of the pyrochlore supergroup from a nonsulfide endogenic assemblage of Pb–Zn–Sb–As minerals in the Pelagonian massif, Macedonia. Geol. Ore Deposits. 2018. Vol. 60. N 8. P. 717—725.
  31. Varlamov D. A., Ermolaeva V. N., Chukanov N. V., Yanchev S., Vigasina M. F., Plechov P. Yu. New data on epidote-supergroup minerals: unusual chemical compositions, typochemistry, and Raman spectroscopy. Geol. Ore Deposits. 2019. Vol. 61. N 8. P. 827—842.
  32. Varlamov D. A., Ermolaeva V. N., Chukanov N. V., Jančev S. Mineralogy of copper in sulfide-free endogenic Pb–Zn–Sb mineralization of the Pelagonian massif, Republic of North Macedonia. Geol. Ore Deposits. 2022. Vol. 64. N 6. P. 598—606.
  33. Wang S., Zheng K., Liu Q., Wang L., Feng X., Li H. Galena weathering in simulated alkaline soil: Lead transformation and environmental implications. Sci. Total Environment. 2021. Vol. 755. N 2. Paper 142708.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Correlations between contents (apfu) of some elements in pyrochlore-supergroup minerals from ores of the Nežilovo area.

Baixar (31KB)
3. Fig. 2. Correlations between contents (apfu) of some elements in minerals of the rutile–tripuhyite series from ores of the Nežilovo area.

Baixar (12KB)
4. Fig. 3. Correlations between contents (apfu) of some elements in nežilovite from ores of the Nežilovo area.

Baixar (26KB)
5. Fig. 4. Correlation between contents (apfu) of Sb and Ti in zincorinmanite-(Zn) from ores of the Nežilovo area.

Baixar (4KB)
6. Fig. 5. Correlations between contents of some components (wt %) in högbomite-supergroup minerals from ores of the Nežilovo area.

Baixar (32KB)
7. Fig. 6. Typical individuals of pyrochlore-supergroup minerals from ores of the Nežilovo area. Light zones are enriched in Pb. The associated minerals are: (a) phlogopite; (б) 1 — braunite, 2 — phlogopite, 3 — Ba-bearing phlogopite, 4 — dolomite of early generation; (в) 1 — baryte, 2 — dolomite; (г) 1 — tilasite, 2 — barite; (д) phlogopite of late generation; (е) phlogopite of an early generation. Polished sections. SEM (BSE) images.

Baixar (41KB)
8. Fig. 7. Typical individuals of minerals of the rutile–tripuhyite series from ores of the Nežilovo area: crystal of early generation (a) and individual of late generation with the outer zone enriched in Sb and Fe. The associated minerals are: (a) 1 — tilasite and 2 — calcite; (б) phlogopite (grey). Polished sections. SEM (BSE) images.

Baixar (10KB)
9. Fig. 8. Typical individuals of almeidaite from ores of the Nežilovo area and associated minerals: (a) 1 –almeidaite (lenticular crystal, light trey), 2 — pyrochlore-supergroup minerals, 3 — tilasite, 4 — calcite, 5 — dolomite, 6 — quartz, 7 — phlogopite, 8 — hematite and (б) 1 — almeidaite anhedral individual (dark grey at the center), 2 — gahnite, 3 — barite of early generation. Polished sections. SEM (BSE) images.

Baixar (19KB)
10. Fig. 9. Typical individuals and aggregates of nežilovite from ores of the Nežilovo area and associated minerals: (a) 1 — nežilovite-2 (sections of thin platelets), 2 — quartz, 3 — baryte, 4 — hematite, 5 — Zn-bearing magnesioriebeckite; (б) 1 — nežilovite-2 (sections of platelets), 2 — quartz, 3 — calcite, 4 — dolomite, 5 — piemontite; (в) 1 — nežilovite-1, 2 — phlogopite of late generation, 3 — fluorapatite, 4 — hematite; (г) 1 — nežilovite-1 (sections of thin platelets), 2 — baryte, 3 — aggregate of högbomite-supergroup minerals and nežilovite, 4 — Zn-bearing magnesioriebrckite. Polished sections. SEM (BSE) images.

Baixar (38KB)
11. Fig. 10. Associations of 1 — sintaxic intergrowths of zincorinmanite-(Zn) (light zones) and a Fe3+-dominant högbomite-supergroup mineral (dark zones) with 2 — baryte, 3 — quartz (а) and the same minerals and 4 — Zn-bearing amphibole (б). Polished sections. SEM (BSE) images.

Baixar (25KB)
12. Fig. 11. Typical individuals and aggregates of högbomite-supergroup minerals (HSM) from ores of the Nežilovo area and associated minerals: (a) 1 — split crystal of an Al- and Ti-dominant HSM (dark grey) in the graphic aggregate of gahnite (2) and barite (3); (б) HSM with low contents of Ti and Sb (presumably, Mn4+-dominant) in graphical aggregate of Mn-, Zn- and Pb-bearing epidote (2) and barite (3), with zoned piemontite-(Pb)–ferripiemontite-(Pb) (4), piemontite (5) and albite (6); (в) Al-dominant HSM with Ti- and Sb-dominant zones (1) in quartz (2); (г) Fe3+- and Sb-dominant HSM (1) in aggregate of baryte (2), hydroxyplumboroméite (3) and quartz (4); (д) Fe3+- and Ti-dominant HSM (1) in the aggregate of braunite (2), phlogopite (3) and ferricoronadite (4); (е) epitaxy of zincovelrsite-(6N6S) (1) on gahnite-1 (2) in the aggregate of gahnite-2 (3). Polished sections. BSE images.

Baixar (67KB)
13. Table 6. Sequence of crystallization of minerals in the ores of the Pelagonian massif

Baixar (149KB)

Declaração de direitos autorais © Russian academy of sciences, 2025