Platinum group minerals from chromitites of northern part of the Voykar-Synya massif (Polar Ural): new data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

In chromitites of northern part of the Voikar-Synya ultramafic massif, which is part of the Khadatinsky ophiolite belt of the Polar Urals, native osmium, Ir-containing native osmium, native iridium, hongshiite, As-containing laurite, Ru-Os-containing pentlandite, kuvaevite, unnamed PGE sulfide with non-ferrous metals, close in stoichiometry to formula Me2S3 (Me = Os, Ru, Cu, Pt, Ir, Fe, Pd, Ni, Rh), high-temperature metallic solid solution (Pd, Pt, Fe), stibiopalladinite, geversite, genkinite, unnamed PGM close in stoichiometry of formula (Pd, Ni, Rh)5AsSb, Pd3Sb and (Ni, Rh, Pt)Sb were the first time discovered and characterized along with previously known platinum group minerals (PGMs). The set of PGMs of massif has been expanded from 10 to 25 mineral spicies and varieties. PGMs from high-alumina chromitites are characterized by wider variety than those from high-chromium chromitites (15 and 9 mineral species, respectively). PGMs of both Os–Ir–Ru and Pt–Pd specializations were found in high-alumina chromitites. High-chromium chromitites are characterized mainly by Os–Ir–Ru specialization. Such feature of PGMs distribution is explained by low degree of partial melting of mantle source of high-alumina chromitites, compared to high-chromium chromitites, which experienced high-temperature partial melting with removal of easily mobile Pd group of PGMs in composition of melted basaltic melt. New data have been obtained on noble metal minerals in the composition of primary and secondary chromitite assemlages.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Yurichev

Tomsk State University

Хат алмасуға жауапты Автор.
Email: juratur@yandex.ru
Ресей, Tomsk

A. Chernyshov

Tomsk State University

Email: juratur@yandex.ru
Ресей, Tomsk

E. Korbovyak

Tomsk State University

Email: juratur@yandex.ru
Ресей, Tomsk

Әдебиет тізімі

  1. Alard O., Griffin W. L., Lorand J. P., Jackson S., O᾿Reilly S. Y. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature. 2000. Vol. 407. P. 891—894.
  2. Anikina E. V., Moloshag V. P., Alimov V. Yu. Platinoid minerals in chromites of the Voykar-Syninsky and Rai-Iz massifs. Doklady Earth Sci. 1993. Vol. 330. N 5. P. 613—616 (in Russian).
  3. Anikina E. V. Platinoids in chromium ores of the Polar Urals. Syktyvkar: IG Komi Scientific Center Ural Branch RAS, 1995. 40 p. (in Russian).
  4. Barkov A. Yu. Zoning, composition variations, mechanisms of element substitution and associations of rare ore minerals from mafic-ultramafic complexes. PhD thesis syn. Cherepovets, 2012. 37 p. (in Russian).
  5. Barkov A. Y., Tolstykh N. D., Martin R. F., Tamura N., Ma Ch., Nikiforov A. A. Kuvaevite, IR5Ni10S16, a new mineral species, its associations and genetic features, from the Sisim river placer zone, Eastern Sayans. Russian Geol. Geophys. 2022. Vol. 63. N 12. P. 1373—1387.
  6. Barkov A. Y., Tolstykh N. D., Tamura N., Martin R. F., McDonald A.M., Cabri L. J. Ferrotorryweiserite, Rh5Fe10S16, a new mineral species from the Sisim Placer Zone, Eastern Sayans, Russia, and the torryweiserite–ferrotorryweiserite series. Minerals. 2021. Vol. 11. Paper 1420.
  7. Barkov A. Y., Fleet M. E., Martin R. F., Alapieti T. T. Zoned sulfides and sulfarsenides of the platinum-group elements from the Penikat layered complex, Finland. Canad. Miner. 2004. Vol. 42. P. 515—537.
  8. Barkov A. Y., Thibault Y., Laajoki K. V.O, Melezhik V. A., Nilsson L. P. Zoning and substitutions in Co–Ni–(Fe)–PGE sulfarsenides from the Mount General’skaya layered intrusion, Arctic Russia. Canad. Miner. 1999. Vol. 37. P. 127—142.
  9. Barnes S. J., Roeder P. L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001. Vol. 42. N 12. P. 2279—2302.
  10. Daltry V. D.C., Wilson A. H. Review of platinum-group mineralogy: compositions and elemental associations of the PG-minerals and unidentified PGE-phases. Miner. Petrol. 1997. Vol. 60. P. 185—229.
  11. Damdinov B. B. Types of precious metal implements of the southeastern part of Eastern Sayan: composition, conditions of formation and genesis. PhD thesis. Ulan-Ude, 2018. 480 p. (in Russian).
  12. Derbyshire E. J., O’Driscoll B., Lenaz D., Gertisser R. Compositionally heterogeneous podiform chromitite in the Shetland Ophiolite Complex (Scotland): implications for chromitite petrogenesis and late-stage alteration in the upper mantle portion of a supra-subduction zone ophiolite. Lithos. 2013. Vol. 162—163. P. 279—300.
  13. Distler V. V., Kryachko V. V., Yudovskaya M. A. Formation conditions of platinum-group metals in chromite ores of the Kempirsai ore field. Geol. Ore Deposits. 2003. Vol. 45. N 1. P. 37—65.
  14. Edwards R. L., Wasserburg G. J. The age emp1acement of obducted oceanic crust in the Ura1s from Sm–Nd and Rb–Sr systematics. Earth P1anet. Sci. Letters. 1985. N 72. Р. 389—404.
  15. Fonseca R. O.C., Laurenz V., Mallmann G., Luguet A., Hoehne N., Jochum K. P. New constraints on the genesis and long-term stability of Os-rich alloys in the Earth’s mantle // Geochim. Cosmochim. Acta. 2012. Vol. 87. P. 227—242.
  16. Garuti G., Zaccarini F. In situ alteration of platinum-group minerals at low temperature: evidence from serpentinized and weathered chromitites of the Vourinos Complex, Greece. Canad. Miner. 1997. Vol. 35. P. 611—626.
  17. Garuti G., Zaccarini F., Moloshag V., Alimov V. Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: an example from chromitites of the Rai-Iz ultramafic complex, Polar Urals, Russia. Canad. Miner. 1999. Vol. 37. P. 1099—1115.
  18. Ghazi J. M., Moazzen M., Rahghoshay M., Moghadam H. S. The geodynamic setting of the Nain ophiolites, Central Iran: evidence from chromian spinels in the chromitites and associated rocks. Ofioliti. 2011. Vol. 36. N 1. P. 59—76.
  19. Gonzalez-Jimenez J.M., Gervilla F., Proenza J. A., Kerestedjian T., Auge T., Bailly L. Zoning of laurite (RuS2)–erlichmanite (OsS2): implications for the origin of PGM in ophiolite chromitites. Eur. J. Miner. 2009. Vol. 21. P. 419—432.
  20. Gurskaya L. I., Smelova L. V., Kolbantsev L. R., Lyakhnitskaya V. D., Lyakhnitsky Yu.S., Shakhova S. N. Platinoids of chromite-bearing massifs of the Polar Urals. Saint Petersburg: VSEGEI, 2004. 306 p. (in Russian).
  21. Harris D. C., Cabri L. J., Nomenclature of platinum-group-element alloys: review and revision. Canad. Miner. 1991. Vol. 29. P. 231—237.
  22. Krivovichev V. G., Gulbin Yu. L. Recommendations for the calculation and presentation of mineral formulas based on chemical analysis data. Zapiski RMO (Proc. Russian Miner. Soc.). 2022. Vol. 151. N 1. P. 114—124 (in Russian).
  23. Kuznetsov S. K., Kotelnikov V. G., Onishchenko S. A., Filippov V. N. Copper-gold-palladium mineralization in ultrabasites of the Voykar-Synya massif in the Polar Urals. Bull. Institute Geol. Komi Sci. Center Ural Branch RAS. 2004. N 5. P. 2—4 (in Russian).
  24. Kuznetsov S. K., Onishchenko S. A., Kotelnikov V. G., Filippov V. N. Copper-gold-palladium mineralization in ultrabasites of the Polar Urals. Doklady Earth Sci. 2007. Vol. 414. N 1. P. 67—69 (in Russian).
  25. Kuznetsov S. K., Shaibekov R. I., Gaikovich M. M., Kovalevich R. A., Vokuev M. V., Shevchuk S. S. Mineralogical features of chromium ores of the Lagortinsko-Kershorskaya area in the Polar Urals. Izv. Komi Sci. Center Ural Branch RAS. 2013. N 2. P. 73—82 (in Russian).
  26. Lazko E. E., Distler V. V., Belousov G. E. Platinum and platinoides in ultrabasic and mafic rocks of the Voykar-Synya ophiolite massif (the Polar Urals). Doklady Earth Sci. 1981. Vol. 258. N 2. P. 465—469 (in Russian).
  27. Makeyev A. B. Mineralogy of alpine-type ultrabasites of the Urals. Saint Pepetsburg: Nauka, 1992. 197 p. (in Russian).
  28. Makeyev A. B., Brianchaninova N. I. Topomineralogy of ultramafic rocks of the Polar Urals. Saint Pepetsburg: Nauka, 1999. 252 p. (in Russian).
  29. Makeyev A. B., Brianchaninova N. I., Kraplya E. A. Geological and mineralogical model of evolution of platinum-bearing alpine-type ultrabasites of the Urals. In: Platinum of Russia. Vol. IV. Moscow: Geoinformmark, 1999. P. 176—183 (in Russian).
  30. Makovicky M., Makovicky E., Rose-Hansen J. Experimental studies on the solubility and distribution of platinum group elements in base metal sulfides in platinum deposits. In: Metallogeny of Basic and Ultrabasic Rocks. London: Institution of Mining and Metallurgy, 1986. P. 415—425.
  31. Malevsky A. Yu., Laputina I. P., Distler V. V. Behavior of platinum group metals during crystallization of pyrrhotite from sulfide melt. Geochemistry. 1977. N 10. P. 1534—1542 (in Russian)
  32. Malitch K. N., Anikina E. V., Badanina I. Y., Pushkarev E. V., Khiller V. V., Belousova E. A. Chemical composition and osmium-isotope systematics of primary and secondary PGM assemblages from high-Mg chromitite of the Nurali lherzolite massif, the South Urals, Russia. Geol. Ore Deposits. 2016. Vol. 58. N 1. P. 1—19.
  33. Matveev S., Ballhaus C. Role of water in the origin of podiform chromitite deposits. Earth. Planet. Sci. Lett. 2002. Vol. 203. P. 235—243.
  34. Melcher F., Grum W., Simon G., Thalhammer T. V., Stumpfl E. F. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J. Petrol. 1997. Vol. 38. P. 1419—1458.
  35. Murzin V. V., Malich K. N., Badanina I. Yu., Varlamov D. A., Chashchukhin I. S. Mineral associations of chromitites of the Alapaevsky dunite-harzburgite massif (Middle Urals). Lithosphere. 2023. Vol. 23. N 5. P. 740—765 (in Russian).
  36. Murzin V. V., Sustavov S. G. New data on minerals of the laurite-erlichmanite series and on their arsenic varieties. Doklady Earth Sci. 2000. Vol. 370. N 3. P. 160—162.
  37. Nikolskaya N. E., Kazennova A. D., Nikolaev V. I. Typomorphism of ore-forming chromospinelide of chrome ore deposits. Moscow: VIMS, 2021. 238 p. (in Russian).
  38. Ovechkin A. M. Mineral resource base of ferrous metals of the Polar Urals. Prospects for study and development. Polar Ural — new mineral resource base of Russia. Tyumen-Salekhard, 1997. P. 78—80 (in Russian).
  39. Pavlov N. V. Chemical composition of chromospinelides in connection with the petrographic composition of rocks of ultrabasic intrusives. Proc. Geol. Institute RAS. 1949. Vol. 103. P. 1—91 (in Russian).
  40. Perevozchikov B. V. Pattern of localization of chromite mineralization in alpine-type hyperbazites (on example of the Urals). Review information. Vol. 7. Moscow: Geoinformmark, 1995. 46 p. (in Russian).
  41. Perevozchikov B. V. Two-stage formation of the main chromite-bearing formations of ophiolitic ultrabasites — reflection of upper mantle processes. Problems of mineralogy, petrography and metallogeny: Proc. Sci. Readings in memory of P. N. Chirvinsky. Perm: Perm University Publishing House, 2009. P. 203—211 (in Russian).
  42. Perevozchikov B. V., Bulykin L. D., Popov I. I., Orfanitsky V. L., Andreev M. I., Snachev V. I., Danilenko S. A., Cherkasov V. L., Chentsov A. M., Zharikova L. N., Klochko A. A. Register of chromite occurrences in alpine-type ultrabasites of the Urals. Perm: KamNIIKIGS, 2000. 474 p.
  43. Pystin A. M., Potapov I. L., Pystina Yu. I. Occurrence of low-sulfide gold-platinum metal ores in the Polar Urals. Zapiski RMO (Proc. Russian Miner. Soc.). 2012. Vol. 141. N 4. P. 60—73 (in Russian).
  44. Reed S. J.B. Electron microprobe analysis and scanning electron microscopy in geology. N.Y.: Cambridge University Press, 2005. 189 p.
  45. Savelyeva G. N. Gabbro-ultramafic complexes of ophiolites of the Urals and their analogues in modern oceanic crust. Moscow: Nauka, 1987. 230 p. (in Russian).
  46. Shaibekov R. I., Kuznetsov S. K., Gaikovich M. M., Shevchuk S. S. Sulfide and noble metal mineralization in chromium ores of the Latorginsko-Kershorskaya area of the Voykar-Synya massif (Polar Urals). Lithosphere. 2015. N 1. P. 75—85 (in Russian).
  47. Shcherbakov S. A. Plastic deformations of ultrabasites of ophiolite association of the Urals. Moscow: Nauka, 1990. 119 p. (in Russian).
  48. Talhammer T. V. Association of minerals of platinum group in massive chromite ores of Kempirsai ophiolite complex (Southern Urals) as manifestation of mantle metasomatism. Zapiski RMO (Proc. Russian Miner. Soc.). 1996. Vol. 125. N 1. P. 25—36 (in Russian).
  49. Tolstykh N. D. Mineral associations of platinum-bearing placers and genetic correlations with their primary sources. PhD thesis syn. Novosibirsk, 2004. 33 p. (in Russian).
  50. Uysal I., Tarkian M., Sadiklar M. B., Zaccarini F., Meisel T., Garuti G., Heidrich S. Petrology of Al- and Cr-rich ophiolitic chromitites from the Mugla, SW Turkey: Implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contrib. Miner. Petrol. 2009. Vol. 158. P. 659—674.
  51. Vakhrusheva N. V., Shiryaev P. B., Stepanov A. E., Bogdanova A. R. Petrology and chromite-bearing of the Rai-Iz ultramafic massif (Polar Urals). Ekaterinburg: IGG Ural Branch RAS, 2017. 265 p. (in Russian).
  52. Varlamov D. A., Murzin V. V. Platinoid minerals from placers of the Verkh-Neyvinsky hypermafic massif (Middle Urals) — new mineral phases and complex of secondary minerals. In: Fedorov scientific session 2014. Saint Petersburg: Lema, 2014. P. 89—91 (in Russian).
  53. Velinsky V. V., Bannikov O. L., Kovyazin S. V. Composition of minerals of Western Sangilen hyperbasites. Petrology of hyperbasites and basites of Siberia, the Far East and Mongolia. Novosibirsk: Nauka, 1980. P. 54—74 (in Russian).
  54. Vikentiev I. V., Tyukova E. E., Mokriy V. D., Ivanova Yu.N., Varlamov D. A., Shuisky A. S., Groznova E. O., Sobolev I. D., Bortnikov N. S. Platinum-palladium ore occurrence Vasilinovskoe: a new type of noble metal mineralization in the Urals. Doklady Earth Sci. 2023. Vol. 512. N 1. P. 39—49 (in Russian).
  55. Yurichev A. N. Platinum group minerals in chromitites of the Agardag ultramafic massif (Tuva Republic): new data. Zapiski RMO (Proc. Russian Miner. Soc.). 2022. Part 151. N 4. P. 56—69 (in Russian).
  56. Yurichev A. N., Chernyshov A. I., Korbovyak E. V. Platinum-bearing of chromitites in the Kharcheruz ultramafic massif (the Polar Urals): new data. Zapiski RMO (Proc. Russian Miner. Soc.). 2020. Vol. 149. N 3. P. 38—53 (in Russian).
  57. Yurichev A. N., Chernyshov A. I., Korbovyak E. V. New data on the platinum-bearing potential of chromitites in the Kharcheruz ultramafic massif, Polar Urals. Geol. Ore Deposits. 2021. Vol. 63. N 7. Р. 706—716.
  58. Zaccarini F., Economou-Eliopoulos M., Kiseleva O., Garuti G., Tsikouras B., Pushkarev E., Idrus A. Platinum group elements (PGE) geochemistry and mineralogy of low economic potential (Rh-Pt-Pd)-Rich chromitites from ophiolite complexes. Minerals. 2022. Vol. 12. Paper 1565.
  59. Zaccarini F., Economou-Eliopoulos M., Tsikouras B., Garuti G. Chromite composition and platinum-group elements distribution in Tethyan chromitites of the Mediterranean Basin: An overview. Minerals. 2024. Vol. 14. Paper 744.
  60. Zaikov V. V., Melekestseva I. Yu., Kotlyarov V. A., Zaikova E. V., Krainev Yu. D. Intergrowths of PGE minerals in the Miass placer zone (Southern Urals) and their primary sources. Mineralogy. 2016. N 4. P. 31—47 (in Russian).
  61. Zhou M-F., Robinson P., Malpas J., Li Z. Podiform chromites in the Luobusa Ophiolite (Southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J. Petrol. 1996. Vol. 37. P. 3—21.
  62. Zhou M.-F., Sun M., Keays R. R., Kerrich R. W. Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochim. Cosmochim. Acta. 1998. Vol. 62. P. 677—688.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic geological map of the Voykar-Syninsky massif (Nikolskaya et al., 2021), with additions by the authors: 1 — Quaternary deposits; 2 — Paleozoic volcanic-sedimentary complexes, undivided; 3 — Proterozoic metamorphic complexes, undivided; 4—16 — Voykar-Rai-Iz ophiolite complex: 4 — dolerite dikes; 5 — quartz diorites; 6—9 — dunite-wehrlite-clinopyroxenite structural-material complex (SMC): 6 — gabbro, metagabbro; 7 — undivided dunites, wehrlites, clinopyroxenites; 8 — undivided wehrlites and dunites; 9 — dunites; 10—12 — dunite-harzburgite SMC: 10 — depleted harzburgites with dunite component; 11 — depleted harzburgites with dunite component of 10—30 %; 12 — dunites with chromium chromospinelides; 13—15 — harzburgite SMC: 13 — undepleted harzburgites with dunite component <10 %; 14 — undepleted harzburgites with dunite component of 10—30 %; 15 — dunites with aluminous chromospinelides; 16 — serpentinites; 17 — geological boundaries; 18 — discontinuities; 19 — thrusts; 20 — ore occurrences of chrome ores: a — identified within boundaries of massif, b — studied in this work (1 — Paitovskoe, 2 — No. 118, 3 — Morkovkinskoe). The inset shows diagram of the location of the Voykar-Synya massif in structure of the Polar Urals. Ultramafic massifs: I — Syum-Keu, II — Kharcheruzsky, III — Rai-Iz, IV — Voykar-Synya.

Жүктеу (62KB)
3. Fig. 2. Samples of high-alumina chromitites from the Morkovkinskoe (a, б) and No. 118 (в) ore occurrences and high-chromium chromitites from the Paitovskoe ore occurrence (г) of the Voykar-Synya massif.

Жүктеу (60KB)
4. Fig. 3. Composition of ore chrome-spinels from chromitites of northern part of the Voikar-Synya massif: a — on triple classification diagram of N. V. Pavlov (Pavlov, 1949): 1 — chromite, 2 — subferrichromite, 3 — aluminochromite, 4 — subferrialuminochromite, 5 — ferrialuminochromite, 6 — subalumoferrichromite, 7 — ferrichromite, 8 — chrompicotite, 9 — subferrichromepicotite, 10 — subalumochromemagnetite, 11 — chromomagnetite, 12 — picotite, 13 — magnetite. Geodynamic settings of formation according to data of (Barnes, Roeder, 2001) are plotted; б — on binary diagram reflecting origin of ore chrome-spinels and their type (Ghazi et al., 2011).

Жүктеу (33KB)
5. Fig. 4. Micrographs of native elements, sulfides and sulfoarsenides in studied high-alumina chromitites of northern part of the Voikar-Synya massif (BSE mode): a — association of laurite, As-bearing laurite (Table 4, an. 11) and Ir-bearing osmium (Table 3, an. 7) in serpentine interstitium; б — polyphase inclusion of osmium (Table 3, an. 1) and erlichmanite (Table 4, an. 5) in serpentine interstitium; в-hypidiomorphic grain of laurite (Table 4, an. 3) at boundary of chromospinelide and serpentine aggregate; г — hypidiomorphic zoned grain of laurite (Table 4, an. 6) at boundary of chromospinel and serpentine aggregate; д — euhedral polyphase inclusion of zonal laurite (Table 4, an. 7) and irarsite (Table 6, an. 2) in serpentine interstitium; е — euhedral zoned grain of laurite (Table 4, an. 8) with inclusion of Ru–Os-bearing heazlewoodite (Table 4, an. 20) in marginal part of chromospinel grain; ж–и — zonal As-bearing laurite (Table 4, an. 17—19, respectively) and irarsite (Table 6, an. 3, 9) in silicate interstitium; к — hypidiomorphic polyphase inclusion of arsenic-bearing laurite (Table 4, an. 15) and irarsite (Table 6, an. 6) in chromospinel grain; л — polyphase inclusion of As-bearing laurite (Table 4, an. 9), irarsite (Table 6, an. 1) and Pt-Sb-bearing irarsite (Table 6, an. 12) at boundary of heazlewoodite and serpentine aggregate; м — isolated irregular inclusion of irarsite (Table 6, an. 10) in serpentine interstitium. Hereinafter: CrSp — chromospinelide; Hzl — heazlewoodite; Srp — serpentine; RuS2(I) — laurite of composition (Ru0.72—0.76Os0.15—0.18Ir0.03—0.07) S2; RuS2(II) — laurite of composition (Ru0.96—0.97Os0.00—0.03Ir0.01—0.02) S2.

Жүктеу (50KB)
6. Fig. 5. Ternary diagrams for PGMs from chromitites of the Voykar-Synya massif: a — composition of native osmium, iridium and ruthenium. Immiscibility field according to (Harris, Cabri, 1991); б, в-composition of minerals of laurite—erlichmanite series, including arsenic-containing varieties. The highlighted areas of sulfides correspond to zonal grains: I — central part, II — marginal part; г, д — composition of intermetallics and antimonides of Pt and Pd in high-alumina chromitites of ore occurrence № 118.

Жүктеу (47KB)
7. Fig. 6. Micrographs of native elements, sulfides and sulfoarsenides in high-chromium chromitites of the Paitovsky ore occurrence of the Voikar-Synya massif (BSE mode): а–е — euhedral laurite grains (Table 5, an. 10, 7, 4, 3, 9, respectively, except for b) encapsulated in chromospinelide, including those with inclusion of Ir-bearing osmium (Table 3, an. 14, 16, respectively), native iridium (Table 3, an. 18) and irarsite; ж — nanoaggregate of mixture of isoferroplatinum and Os-Ir alloy (Table 3, an. 20—21) in chromospinel grain; з — euhedral grain of Ru–Os-bearing pentlandite (Table 5, an. 14) with inclusion of irarsite (Table 6, an. 16); и — hypidiomorphic grain of pyrite (Table 2, an. 21—22) with inclusion of irarsite at boundary of chromospinel grain and serpentine interstitium; к — euhedral grain of millerite (Table 2, an. 17) with inclusion of Rh-bearing irarsite (Table 6, an. 18); л — euhedral grain of chalcocite (Table 2, an. 19) with inclusion of hollingworthite (Table 6, an. 20); м — polyphase grain of kuvaevite (Table 5, an. 17), PGE sulfide with non-ferrous metals, close in stoichiometry to formula Me2S3 (Table 5, an. 20), and undiagnosed mineral phase. Mlr — millerite; Py — pyrite; Pn(Ru-Os) — Ru–Os-containing pentlandite.

Жүктеу (42KB)
8. Fig. 7. Microphotographs of intermetallides and antimonides of Pt and Pd in high-alumina chromitites of ore occurrence No. 118 of the Voykar-Synya massif (BSE mode): a — polyphase inclusion of geversite (Table 7, an. 14), irarsite (Table 6, an. 4) and unnamed phase (Ni, Rh, Pt)Sb (Table 7, an. 20) in serpentine interstitium; б — microinclusions of Pt and Pd antimonides and irarsite at boundary of transformed marginal zone of chromospinelide and serpentine aggregate; в-polyphase grains of genkinite (Table 7, an. 18) and Rh-bearing irarsite (Table 6, an. 13) in serpentine interstitium; г, д — microinclusions of stibiopalladinite (Table 7, an. 2) in association with heazlewoodite (Table 2, an. 4, 5) at boundary of transformed marginal zone of chromospinelide and serpentine aggregate; е — stibiopalladinite (Table 7, an. 8) with inclusion of sperrylite (Table 6, an. 15) and high-temperature Fe-containing Pd-Pt solid solution (Table 3, an. 11) in crack in chromospinelide grain “healed” with serpentine; ж, з — stibiopalladinite (Table 7, an. 7—9), geversite (Table 7, an. 16—17) and hongshiite (Table 3, an. 9) in association with heazlewoodite (Table 2, an. 6—7) at boundary of transformed marginal zone of chromospinelide and serpentine aggregate; и — unnamed phase Pd3Sb (Table 7, an. 12) at boundary of transformed marginal zone of chromospinelide and serpentine aggregate. Cr-Mgt — chromium magnetite; Opx — orthopyroxene.

Жүктеу (72KB)

© Russian academy of sciences, 2025