Crystal structure model of sodium-depleted sacrofanite. Problem of the sacrofanite identification

Cover Page

Cite item

Full Text

Abstract

A structural model of the sodium-depleted analogue of sacrofanite, a 28-layer mineral of the cancrinite group with the empirical formula (Na3.18Ca2.81K1.93)(Si6.10Al5.83Fe0.07O24)(SO4)1.95F0.51Cl0.19(OH)0.23·0.155H2O from sanidine syenite of the Sacrofano paleovolcano, Latium, Italy was obtained. The studied mineral is hexagonal, space group P-62с; the unit cell parameters [a = 12.90519(13), с = 74.2181(10) Å, V = 10704.6(3) Å3] are close to those of holotype sacrofanite. The aluminosilicate framework of the studied sodium-depleted sacrofanite contains columns of zeolitic cavities of four types (cancrinite, sodalite, Losod, and liottite ones). Their presence is confirmed by IR spectroscopy data, unlike holotype sacrofanite whose published IR spectrum does not contain characteristic band of liottite cage at 547±4 cm-1.

About the authors

N. V. Chukanov

Moscow State University; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Author for correspondence.
Email: zrmo@minsoc.ru

Faculty of Geology

Russian Federation, Vorobievy Gory, Moscow, 119991; Chernogolovka, Moscow Oblast

N. V. Zubkova

Moscow State University

Email: zrmo@minsoc.ru

Faculty of Geology

Russian Federation, Vorobievy Gory, Moscow, 119991

I. V. Pekov

Moscow State University; Vernadsky Institute of Geochemistry and Analytical Chemistry RAS

Email: zrmo@minsoc.ru

Faculty of Geology

Russian Federation, Vorobievy Gory, Moscow, 119991; Kosygina str. 19, Moscow, 119991

D. A. Ksenofontov

Moscow State University

Email: zrmo@minsoc.ru

Faculty of Geology

Russian Federation, Vorobievy Gory, Moscow, 119991

D. Yu. Pushcharovsky

Moscow State University

Email: zrmo@minsoc.ru

Faculty of Geology

Russian Federation, Vorobievy Gory, Moscow, 119991

References

  1. Ballirano P., Maras A., Buseсk P.R. Crystal chemistry and IR spectroscopy of Cl- and SO4-bearing cancrinite-like minerals. Amer. Miner. 1996. Vol. 81. P. 1003—1012.
  2. Bonaccorsi E., Merlino S. Modular microporous minerals: Cancrinite-davyne group and C-S-H phases. Revs. Miner. Geochem. 2005. Vol. 57. P. 241—290.
  3. Bonaccorsi E., Ballirano P., Cámara F. The crystal structure of sacrofanite, the 74 Å phase of the cancrinite–sodalite supergroup. Micropor. Mesopor. Mater. 2012. Vol. 147. P. 318—326.
  4. Burragato F., Parodi G.C., Zanazzi P.F. Sacrofanite — a new mineral of the cancrinite group. N. Jahrb. Miner. Monatsh. 1980. Vol. 140(1). P. 102—110.
  5. Chukanov N.V., Rastsvetaeva R.K., Pekov I.V., Zadov A.E., Allori R., Zubkova N.V., Giester G., Pushcharovsky D. Yu., Van K.V. Biachellaite, (Na, Ca, K)8(Si6Al6O24)(SO4)2(OH)0.5·H2O, a new mineral species of the cancrinite group. Zapiski RMO (Proc. Russian Miner. Soc.). 2008. Vol. 137. N 4. P. 57—66 (in Russian, English translation: Geol. Ore Deposits. 2009. Vol. 51. N 7. P. 588—594).
  6. Chukanov N.V., Aksenov S.M., Rastsvetaeva R.K. Structural chemistry, IR spectroscopy, properties, and genesis of natural and synthetic microporous cancrinite- and sodalite-related materials: a review. Micropor. Mesopor. Mater. 2021a. Vol. 323. Article N111098.
  7. Chukanov N.V., Zubkova N.V., Pekov I.V., Giester G., Pushcharovsky D. Yu. Sulfite analogue of alloriite from Sacrofano, Latium, Italy: Crystal chemistry and specific features of genesis. Zapiski RMO (Proc. Russian Miner. Soc.). 2021b. Vol. 150. N 1. P. 48—62 (in Russian, English translation: Geol. Ore Deposits. 2021. Vol. 63. N 8. P. 793—804).
  8. Chukanov N.V., Zubkova N.V., Varlamov D.A., Pekov I.V., Belakovskiy D.I., Britvin S.N., V. Van K.V., Ermolaeva V.N., Vozchikova S.A., Pushcharovsky D. Yu. Steudelite, (Na3)[(K, Na)17Ca7]Ca4(Al24Si24O96)(SO3)6F6·4H2O, a new cancrinite-group mineral with afghanite-type framework topology. Phys. Chem. Miner. 2022. Vol. 49. N1.
  9. Chukanov N.V., Aksenov S.M., Pekov I.V. Infrared spectroscopy as a tool for the analysis of framework topology and extraframework components in microporous cancrinite- and sodalite-related aluminosilicates. Spectr. Acta Part A: Molecular and Biomolecular Spectroscopy. 2023. Vol. 287. N 1. Paper 121993. P. 1—10.
  10. De Rita D., Zarlenga F. Middle Pleistocene geology of the “Bassa Campagna Romana”. Working Papers of Int. Congress “World of Elephants”. Rome, 2001. P. 38—42.
  11. Liotti L., Tealdi E. Il vulcanesimo Sabatino ed i minerali della caldera di Sacrofano. Rivista Mineralogica Italiana. 1983. Vol. 2. P. 35—58.
  12. Petříček V., Dušek M, Palatinus L. JANA2006. The crystallographic computing system. Praha: Institute of Physics, 2006.
  13. Rigaku Oxford Diffraction. CrysAlisPro Software System, v. 1.171.39.46, Oxford, UK: Rigaku Corporation, 2018.
  14. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015. Vol. C71. P. 3—8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences