Irreversibility of crystal growth and dissolution processes at the nanoscale
- Авторлар: Piskunova N.N.1
-
Мекемелер:
- Komi Scientific Centre, Urals Branch RAS
- Шығарылым: Том CLIV, № 2 (2025)
- Беттер: 52-74
- Бөлім: ARTICLES
- URL: https://journals.eco-vector.com/0869-6055/article/view/689062
- DOI: https://doi.org/10.31857/S0869605525020033
- EDN: https://elibrary.ru/HAMIOG
- ID: 689062
Дәйексөз келтіру
Аннотация
Morphological and kinetic characteristics of continuous transition through the saturation point from dissolution to growth on the same monomolecular steps on the crystal surface prove that growth and dissolution in the kinetic regime are irreversible processes at the nanoscale. Experimental modeling to solve the fundamental problem of the reversibility of growth and dissolution was carried out using atomic force microscopy (AFM) at extremely low crystallization rates of a poorly soluble model crystal in low-viscosity solutions. The result obtained extends the understanding of near-equilibrium crystal growth processes and the mechanisms of zonality formation in crystals.
Толық мәтін

Авторлар туралы
N. Piskunova
Komi Scientific Centre, Urals Branch RAS
Хат алмасуға жауапты Автор.
Email: piskunova@geo.komisc.ru
Yushkin Institute of Geology
Ресей, SyktyvkarӘдебиет тізімі
- Adobes-Vidal M., Shtukenberg A. G., Ward M. D., Unwin P. R. Multiscale visualization and quantitative analysis of L-cystine crystal dissolution. Cryst. Growth Des. 2017. Vol. 17. N 4. P. 1766—1774.
- Aleksandrov V. D., Amerkhanova Sh.K., Postnikov V. A., Sobolev A. Yu., Sobol O. V. Analysis of melting and crystallization processes of crystal hydrates using melting thermograms. Interuniversity collection of scientific papers “Physicochemical aspects of studying clusters, nanostructures and nanomaterials”. Tver: Tver State University, 2015. N 7. P. 5—15 (in Russian).
- Andreev V. K., Zakhvataev V. E., Ryabitsky E. A. Thermocapillary instability. Novosibirsk: Nauka, 2000. 126 p. (in Russian).
- Bose S. Dissolution kinetics of sulfate minerals: linking environmental significance of mineral water interface reactions to the retention of aqueous CrO42– in natural waters. PhD thesis. Environmental Sciences Ph D. Ohio: Wright State University, 2008.
- Bozhilov K. N., Le T. T., Qin Z., Terlier T., Palčić A., Rimer J. D., Valtchev V. Time-resolved dissolution elucidates the mechanism of zeolite MFI crystallization. Sci. Adv. 2021. Vol. 7. N 25. eabg0454.
- Bredikhin V. I., Ershov V. P., Korolikhin V. V., Lizyakina V. N., Potapenko S. Yu., Khlyunev N. V. Mass transfer processes in KDP crystal growth from solutions. J. Cryst. Growth. 1987. Vol. 84. N 3. P. 509—514.
- Chernov A. A., Malkin A. I. Regular and irregular growth and dissolution of (101) ADP faces under low supersaturations. J. Cryst. Growth. 1988. Vol. 92. N 3-4. P. 432—444.
- Clark J. N., Ihli J., Schenk A. S., Kim Y. Y., Kulak A. N., Campbell J. M., Nisbet G., Meldrum F. C., Robinson I. K. Three-dimensional imaging of dislocation propagation during crystal growth and dissolution. Nat. Mater. 2015. Vol. 14. P. 780—784.
- Derksen A. J., van Enckevort W. J.P., Couto M. S. Behavior of steps on the (001) face of K2Cr2O7 crystals. J. Phys. D: Applied Physics. 1994. Vol. 27. N 12. P. 2580—2591.
- Dove P. M., Han N., De Yoreo J. J. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. PNAS. 2005. Vol. 102. N 43. P. 15357—15362.
- Dove P., Han N. Kinetics of mineral dissolution and growth as reciprocal microscopic surface processes across chemical driving Force. In: Perspectives on Inorganic, Organic and Biological Crystal Growth: From Fundamentals to Applications Directions: based on the lectures presented at the International summer school on crystal growth, Park City: Utah, 2007. Eds. M. Skowronski, J. J. De Yoreo, C. A. Wang. New York: Am. Inst. Phys. Conf. Ser., 2007. N 916. P. 215—234.
- Dvoryantseva G. G., Lindeman S. V., Aieksanyan M. S., Struehkov Yu.T., Teten’ehuk K.P., Khabarova L. S., Elina A. S. Connection between the structure and the antibacterial activity of the n-oxides of quinoxalines. Molecular structure of dioxidine and quinoxidine. Pharm. Chem. J. 1990. Vol. 24. N 9. P. 672—677.
- Elts E., Greiner M., Briesen H. In Silico prediction of growth and dissolution rates for organic molecular crystals: a multiscale approach. Crystals. 2017. Vol. 7. N 10. P. 288—311.
- Frank F. C. The kinematic theory of crystal growth and dissolution processes. In: Growth and Perfection of Crystals. Eds. R. H. Doremus, B. W. Roberts, D. Turnbull. New York: Wiley, 1958. P. 411—419.
- Hadjittofis E., Isbell M. A., Karde V., Varghese S., Ghoroi C., Heng J. Y.Y. Influences of crystal anisotropy in pharmaceutical process development. Pharm. Res. 2018. Vol. 35. N 5. P. 100—122.
- Heiman R. B. Auflösung von kristallen. Theorie und technische anwendung. Wien, New York, USA: Springer-Verlag, 1975. P. 45—65.
- Hill A. R., Cubillas P., Gebbie-Rayet J.T., Trueman M., de Bruyn N., Harthi Z., Pooley R. J.S., Attfield M. P., Blatov V. A., Proserpio D. M., Gale J. D., Akporiaye D., Arstad B., Anderson M. W. CrystalGrower: a generic computer program for Monte Carlo modeling of crystal growth. Chem. Sci. 2021. Vol. 12. N 3. P. 1126—1146.
- Johnston W. G. Dislocation etch pits in nonmetallic crystals. In: Progress in Ceramic Science. Ed. J. E. Burke. New York: Pergamon Press Inc., 1962. 11. 245 p.
- Konnert J. H., d’Antonio P., Ward K. B. Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope. Acta Cryst. 1994. DS0. P. 603—613.
- Klepikov I. V., Vasilev E. A., Antonov A. V. Growth nature of negative relief forms of diamonds from Ural placer deposits. Crystall. Rep. 2020. Vol. 65. N 2. P. 300—306.
- Kuwahara Y., Uehara S. AFM study on surface microtopography, morphology and crystal growth of hydrothermal illite in izumiyama pottery stone from Arita, Saga Prefecture, Japan. Open Miner. J. 2008. Vol. 2. N 1. P. 34—47.
- Lovette M. A., Muratore M., Doherty M. F. Crystal shape modification through cycles of dissolution and growth: Attainable regions and experimental validation. AIChE J. 2012. Vol. 58. N 5. P. 1465—1474.
- Luttge A. Crystal dissolution kinetics and Gibbs free energy. JCR: J. Electron Spectrosc. 2006. Vol. 150. P. 248—259.
- Madras G., McCoy B. J. Reversible crystal growth–dissolution and aggregation–breakage: numerical and moment solutions for population balance equations. Powder Technol. 2004. N 143-144. P. 297—307.
- Nakano K., Maruyama S., Kato T., Yonezawa Y., Okumura H., Matsumoto Y. Direct visualization of kinetic reversibility of crystallization and dissolution behavior at solution growth interface of SiC in Si-Cr solvent. Surfaces and Interfaces. 2022. Vol. 8. 101664.
- Neugebauer P., Cardona J., Besenhard M. O. Crystal shape modification via cycles of growth and dissolution in a tubular crystallizer. Cryst. Growth Des. 2018. Vol. 18. N 8. P. 4403—4415.
- Pina C. M. Nanoscale dissolution and growth on anhydrite cleavage faces. Geochim. Cosmochim. Acta. 2009. Vol. 73. N 23. P. 7034—7044.
- Piskunova N. N. Study of self-organization processes on a damaged crystal surface using atomic force microscopy. Zapiski RMO (Proc. Russian Miner. Soc.). 2022. Vol. 151. N 5. P. 112—127 (in Russian).
- Piskunova N. N. Direct observation of growth processes on a crystalline surface initiated by impurity capture. Zapiski RMO (Proc. Russian Miner. Soc.). 2023. Vol. 152. N 3. P. 82—97 (in Russian).
- Risthaus P., Bosbach D., Becker U., Putnis A. Barite scale formation and dissolution at high ionic strength studied with atomic force microscopy. Colloids Surfaces A Physicochem. Eng. Asp. 2001. Vol. 191. P. 201—214.
- Rekhviashvili S. Sh. On the thermodynamics of contact interaction in an atomic force microscope. Tech. Phys. 2001. Vol. 46. P. 1335—1338.
- Ristic R. I., Sherwood N., Shriparhi T. The influence of tensile strain on the growth of crystals of potash alum and sodium nitrate. J. Cryst. Growth. 1997. Vol. 179. N 1-2. P. 194—204.
- Rivzi A. K. Nucleation, growth and dissolution of faceted single crystals. PhD thesis. EngD Chemical Engineering. Newcastle: Newcastle University, 2020.
- Sangwal K. Crystal etching. Theory, Experiment, and Application. Defects in Solids. Vol. 15. Amsterdam, Oxford, New York, Tokyo: North Holland, 1987. 497 p.
- Cebisi T., Bradshaw P. Physical and Computatational Aspect of Convective Heat Transfer. N.Y.: Springer-Verlag, 1984.
- Shekunov B. Y., Grant D. J. In situ optical interferometric studies of the growth and dissolution behavior of paracetamol (acetaminophen). 1. Growth kinetics. J. Phys. Chem. B. 1997. Vol. 101. P. 3973—3979.
- Shen Z., Kerisit S. N., Stack A. G., Rosso K. M. Free energy landscape of the dissolution of gibbsite at high pH. J. Phys. Chem. Lett. 2018. Vol. 9. N 7. P. 1809—1814.
- Schott J., Oelkers E. H., Bénézeth P., Goddéris Y., François L. Can accurate kinetic laws be created to describe chemical weathering? Comptes Rendus — Géoscience. 2012. Vol. 344. N 11-12. P. 568—585.
- Shtukenberg A. G., Poloni L. N., Zhu Z., An Z., Bhandari M., Song P., Rohl A. L., Kahr B., Ward M. D. Dislocation-actuated growth and inhibition of hexagonal L-cystine crystallization at the molecular level. Cryst. Growth Des. 2015. Vol. 15. N 2. P. 921—934.
- Snyder R. C., Studener S., Doherty M. F. Manipulation of crystal shape by cycles of growth and dissolution. AIChE J. 2007. Vol. 53. N 6. P. 1510—1517.
- Stack A. G., Raiteri P., Gale J. D. Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories. J. Am. Chem. Soc. 2012. Vol. 134. N 1. P. 11—14.
- Tilbury C. J. Enhancing mechanistic crystal growth models. PhD thesis in Chemical Engineering. Santa Barbara: University of California, 2017.
- Vekilov P. G., Kuznetzov Yu.G., Chernov A. A. Dissolution morphology and kinetics of (101) ADP face; Mild etching of possible surface defects. J. Cryst. Growth. 1990. Vol. 102. N 4. P. 706—716.
- Zhai H., Wang L., Putnis C. V. Inhibition of spiral growth and dissolution at the brushite (010) interface by chondroitin 4-sulfate. J. Phys. Chem. B. 2019. Vol. 123(4). P. 845—851.
Қосымша файлдар
