Irreversibility of crystal growth and dissolution processes at the nanoscale

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Morphological and kinetic characteristics of continuous transition through the saturation point from dissolution to growth on the same monomolecular steps on the crystal surface prove that growth and dissolution in the kinetic regime are irreversible processes at the nanoscale. Experimental modeling to solve the fundamental problem of the reversibility of growth and dissolution was carried out using atomic force microscopy (AFM) at extremely low crystallization rates of a poorly soluble model crystal in low-viscosity solutions. The result obtained extends the understanding of near-equilibrium crystal growth processes and the mechanisms of zonality formation in crystals.

全文:

受限制的访问

作者简介

N. Piskunova

Komi Scientific Centre, Urals Branch RAS

编辑信件的主要联系方式.
Email: piskunova@geo.komisc.ru

Yushkin Institute of Geology

俄罗斯联邦, Syktyvkar

参考

  1. Adobes-Vidal M., Shtukenberg A. G., Ward M. D., Unwin P. R. Multiscale visualization and quantitative analysis of L-cystine crystal dissolution. Cryst. Growth Des. 2017. Vol. 17. N 4. P. 1766—1774.
  2. Aleksandrov V. D., Amerkhanova Sh.K., Postnikov V. A., Sobolev A. Yu., Sobol O. V. Analysis of melting and crystallization processes of crystal hydrates using melting thermograms. Interuniversity collection of scientific papers “Physicochemical aspects of studying clusters, nanostructures and nanomaterials”. Tver: Tver State University, 2015. N 7. P. 5—15 (in Russian).
  3. Andreev V. K., Zakhvataev V. E., Ryabitsky E. A. Thermocapillary instability. Novosibirsk: Nauka, 2000. 126 p. (in Russian).
  4. Bose S. Dissolution kinetics of sulfate minerals: linking environmental significance of mineral water interface reactions to the retention of aqueous CrO42– in natural waters. PhD thesis. Environmental Sciences Ph D. Ohio: Wright State University, 2008.
  5. Bozhilov K. N., Le T. T., Qin Z., Terlier T., Palčić A., Rimer J. D., Valtchev V. Time-resolved dissolution elucidates the mechanism of zeolite MFI crystallization. Sci. Adv. 2021. Vol. 7. N 25. eabg0454.
  6. Bredikhin V. I., Ershov V. P., Korolikhin V. V., Lizyakina V. N., Potapenko S. Yu., Khlyunev N. V. Mass transfer processes in KDP crystal growth from solutions. J. Cryst. Growth. 1987. Vol. 84. N 3. P. 509—514.
  7. Chernov A. A., Malkin A. I. Regular and irregular growth and dissolution of (101) ADP faces under low supersaturations. J. Cryst. Growth. 1988. Vol. 92. N 3-4. P. 432—444.
  8. Clark J. N., Ihli J., Schenk A. S., Kim Y. Y., Kulak A. N., Campbell J. M., Nisbet G., Meldrum F. C., Robinson I. K. Three-dimensional imaging of dislocation propagation during crystal growth and dissolution. Nat. Mater. 2015. Vol. 14. P. 780—784.
  9. Derksen A. J., van Enckevort W. J.P., Couto M. S. Behavior of steps on the (001) face of K2Cr2O7 crystals. J. Phys. D: Applied Physics. 1994. Vol. 27. N 12. P. 2580—2591.
  10. Dove P. M., Han N., De Yoreo J. J. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. PNAS. 2005. Vol. 102. N 43. P. 15357—15362.
  11. Dove P., Han N. Kinetics of mineral dissolution and growth as reciprocal microscopic surface processes across chemical driving Force. In: Perspectives on Inorganic, Organic and Biological Crystal Growth: From Fundamentals to Applications Directions: based on the lectures presented at the International summer school on crystal growth, Park City: Utah, 2007. Eds. M. Skowronski, J. J. De Yoreo, C. A. Wang. New York: Am. Inst. Phys. Conf. Ser., 2007. N 916. P. 215—234.
  12. Dvoryantseva G. G., Lindeman S. V., Aieksanyan M. S., Struehkov Yu.T., Teten’ehuk K.P., Khabarova L. S., Elina A. S. Connection between the structure and the antibacterial activity of the n-oxides of quinoxalines. Molecular structure of dioxidine and quinoxidine. Pharm. Chem. J. 1990. Vol. 24. N 9. P. 672—677.
  13. Elts E., Greiner M., Briesen H. In Silico prediction of growth and dissolution rates for organic molecular crystals: a multiscale approach. Crystals. 2017. Vol. 7. N 10. P. 288—311.
  14. Frank F. C. The kinematic theory of crystal growth and dissolution processes. In: Growth and Perfection of Crystals. Eds. R. H. Doremus, B. W. Roberts, D. Turnbull. New York: Wiley, 1958. P. 411—419.
  15. Hadjittofis E., Isbell M. A., Karde V., Varghese S., Ghoroi C., Heng J. Y.Y. Influences of crystal anisotropy in pharmaceutical process development. Pharm. Res. 2018. Vol. 35. N 5. P. 100—122.
  16. Heiman R. B. Auflösung von kristallen. Theorie und technische anwendung. Wien, New York, USA: Springer-Verlag, 1975. P. 45—65.
  17. Hill A. R., Cubillas P., Gebbie-Rayet J.T., Trueman M., de Bruyn N., Harthi Z., Pooley R. J.S., Attfield M. P., Blatov V. A., Proserpio D. M., Gale J. D., Akporiaye D., Arstad B., Anderson M. W. CrystalGrower: a generic computer program for Monte Carlo modeling of crystal growth. Chem. Sci. 2021. Vol. 12. N 3. P. 1126—1146.
  18. Johnston W. G. Dislocation etch pits in nonmetallic crystals. In: Progress in Ceramic Science. Ed. J. E. Burke. New York: Pergamon Press Inc., 1962. 11. 245 p.
  19. Konnert J. H., d’Antonio P., Ward K. B. Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope. Acta Cryst. 1994. DS0. P. 603—613.
  20. Klepikov I. V., Vasilev E. A., Antonov A. V. Growth nature of negative relief forms of diamonds from Ural placer deposits. Crystall. Rep. 2020. Vol. 65. N 2. P. 300—306.
  21. Kuwahara Y., Uehara S. AFM study on surface microtopography, morphology and crystal growth of hydrothermal illite in izumiyama pottery stone from Arita, Saga Prefecture, Japan. Open Miner. J. 2008. Vol. 2. N 1. P. 34—47.
  22. Lovette M. A., Muratore M., Doherty M. F. Crystal shape modification through cycles of dissolution and growth: Attainable regions and experimental validation. AIChE J. 2012. Vol. 58. N 5. P. 1465—1474.
  23. Luttge A. Crystal dissolution kinetics and Gibbs free energy. JCR: J. Electron Spectrosc. 2006. Vol. 150. P. 248—259.
  24. Madras G., McCoy B. J. Reversible crystal growth–dissolution and aggregation–breakage: numerical and moment solutions for population balance equations. Powder Technol. 2004. N 143-144. P. 297—307.
  25. Nakano K., Maruyama S., Kato T., Yonezawa Y., Okumura H., Matsumoto Y. Direct visualization of kinetic reversibility of crystallization and dissolution behavior at solution growth interface of SiC in Si-Cr solvent. Surfaces and Interfaces. 2022. Vol. 8. 101664.
  26. Neugebauer P., Cardona J., Besenhard M. O. Crystal shape modification via cycles of growth and dissolution in a tubular crystallizer. Cryst. Growth Des. 2018. Vol. 18. N 8. P. 4403—4415.
  27. Pina C. M. Nanoscale dissolution and growth on anhydrite cleavage faces. Geochim. Cosmochim. Acta. 2009. Vol. 73. N 23. P. 7034—7044.
  28. Piskunova N. N. Study of self-organization processes on a damaged crystal surface using atomic force microscopy. Zapiski RMO (Proc. Russian Miner. Soc.). 2022. Vol. 151. N 5. P. 112—127 (in Russian).
  29. Piskunova N. N. Direct observation of growth processes on a crystalline surface initiated by impurity capture. Zapiski RMO (Proc. Russian Miner. Soc.). 2023. Vol. 152. N 3. P. 82—97 (in Russian).
  30. Risthaus P., Bosbach D., Becker U., Putnis A. Barite scale formation and dissolution at high ionic strength studied with atomic force microscopy. Colloids Surfaces A Physicochem. Eng. Asp. 2001. Vol. 191. P. 201—214.
  31. Rekhviashvili S. Sh. On the thermodynamics of contact interaction in an atomic force microscope. Tech. Phys. 2001. Vol. 46. P. 1335—1338.
  32. Ristic R. I., Sherwood N., Shriparhi T. The influence of tensile strain on the growth of crystals of potash alum and sodium nitrate. J. Cryst. Growth. 1997. Vol. 179. N 1-2. P. 194—204.
  33. Rivzi A. K. Nucleation, growth and dissolution of faceted single crystals. PhD thesis. EngD Chemical Engineering. Newcastle: Newcastle University, 2020.
  34. Sangwal K. Crystal etching. Theory, Experiment, and Application. Defects in Solids. Vol. 15. Amsterdam, Oxford, New York, Tokyo: North Holland, 1987. 497 p.
  35. Cebisi T., Bradshaw P. Physical and Computatational Aspect of Convective Heat Transfer. N.Y.: Springer-Verlag, 1984.
  36. Shekunov B. Y., Grant D. J. In situ optical interferometric studies of the growth and dissolution behavior of paracetamol (acetaminophen). 1. Growth kinetics. J. Phys. Chem. B. 1997. Vol. 101. P. 3973—3979.
  37. Shen Z., Kerisit S. N., Stack A. G., Rosso K. M. Free energy landscape of the dissolution of gibbsite at high pH. J. Phys. Chem. Lett. 2018. Vol. 9. N 7. P. 1809—1814.
  38. Schott J., Oelkers E. H., Bénézeth P., Goddéris Y., François L. Can accurate kinetic laws be created to describe chemical weathering? Comptes Rendus — Géoscience. 2012. Vol. 344. N 11-12. P. 568—585.
  39. Shtukenberg A. G., Poloni L. N., Zhu Z., An Z., Bhandari M., Song P., Rohl A. L., Kahr B., Ward M. D. Dislocation-actuated growth and inhibition of hexagonal L-cystine crystallization at the molecular level. Cryst. Growth Des. 2015. Vol. 15. N 2. P. 921—934.
  40. Snyder R. C., Studener S., Doherty M. F. Manipulation of crystal shape by cycles of growth and dissolution. AIChE J. 2007. Vol. 53. N 6. P. 1510—1517.
  41. Stack A. G., Raiteri P., Gale J. D. Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories. J. Am. Chem. Soc. 2012. Vol. 134. N 1. P. 11—14.
  42. Tilbury C. J. Enhancing mechanistic crystal growth models. PhD thesis in Chemical Engineering. Santa Barbara: University of California, 2017.
  43. Vekilov P. G., Kuznetzov Yu.G., Chernov A. A. Dissolution morphology and kinetics of (101) ADP face; Mild etching of possible surface defects. J. Cryst. Growth. 1990. Vol. 102. N 4. P. 706—716.
  44. Zhai H., Wang L., Putnis C. V. Inhibition of spiral growth and dissolution at the brushite (010) interface by chondroitin 4-sulfate. J. Phys. Chem. B. 2019. Vol. 123(4). P. 845—851.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Increased surface energy of particles (left) and increased surface tension (right) at the dislocation exit (D), preventing an increase in the interphase surface, i. e., the addition of matter to the dislocation exit point during growth.

下载 (621KB)
3. Fig. 2. Upper part — dissolution at the exit point of a screw dislocation (circle). Lower part — transition to growth on this screw dislocation (magnified): the matter attaches to the steps edges but not to the exit point of the dislocation (foursquare). The time from the first snapshot is marked on each image. Scale bars (2 µm) are shown in the upper left corner of the images.

下载 (2MB)
4. Fig. 3. Dissolution and subsequent growth of monomolecular steps of the same hillock — a growth analogue of the Frank-Read dislocation source. The contour of the left part of one of the steps is marked in white. The moment when the system crossed the saturation point is marked by a red rectangle. The time from the start of the experiment is marked on the images. The image size is 4×7 µm.

下载 (3MB)
5. Fig. 4. Fragment of the graphical image of the transition from dissolution to growth through the saturation point on the steps of the same dislocation mound. In the left light zone of dissolution, growth zones (dark cells) and arrest regions (red cells) are visible. In the dark growth zone on the right, rare dissolution regions (light cells) and arrest regions (red cells) are found. The colors assigned to the cells are based on calculations using AFM data (callout in the centre).

下载 (3MB)
6. Fig. 5. Average tangential rate of monomolecular steps on the Frank–Read hillock during the transition from dissolution (left) to growth (right) through the saturation point.

下载 (1MB)
7. Fig. 6. The average normal rate and its fluctuations during the transition from dissolution to growth through the saturation point. The inset shows three profiles of one hillock composed of monomolecular steps (AFM data): one hour before the saturation point, before dissolution (white shape — 1), at the point of maximum dissolution (red shape — 2), and after one hour of growth (green shape — 3).

下载 (1MB)
8. Fig. 7. The gradients ∇С, ∇I and ∇K are generated by thermal oscillations in the diffusion layer around the thickness δ evaporation and by convection, respectively. The limiting surface processes near the low rates will be the gradients resulting from the excess (during dissolution) and deficiency (during growth) of the substance near the surface itself and surface migration — the symbols ∇Rd, ∇Rg and Mxy in the callouts.

下载 (999KB)
9. Fig. 8. Modeling of the instrumental influence on nanoscale crystallization processes. On the left (а, в, д, ж, и) — the black line shows the result of the experiment, the red line shows the character of the influence (explanations in the text). On the right (б, г, е, з, к) — the result of the addition of the red and black curves, i. e. the hypothetical curve of the average tangential rate and its fluctuations in the absence of solution stirring, thermal effect of the laser or mechanical effect of the AFM-tip.

下载 (3MB)

版权所有 © Russian academy of sciences, 2025