Lednevite, Cu[PO3 (OH)]·H2O, a new mineral from Murzinskoe Au deposit, Altai Krai, Russia

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Lednevite, ideally Cu[PO3(OH)]·H2O, is a new mineral discovered at the 255 m level of the Murzinskoe Au deposit, Krasnoshchyokovskiy District, Altai Krai, Western Siberia, Russia. It forms spherulites up to 0.1 mm in diameter, composed of very thin fibers and grouped in aggregates up to 1.5 mm across. Lednevite overgrows philipsburgite crystals on a matrix of epidote-andradite skarn and quartz and associates with malachite, chrysocolla, kaolinite, goethite and P-bearing cornubite. The new mineral is transparent, has sky blue color, very pale blue streak and vitreous lustre. Cleavage is not observed. The Mohs’ hardness is ~3. Dmeas = 3.18(2) g cm–3, Dcalc = 3.196 g cm–3. The chemical composition of lednevite is (electron microprobe, wt.%; H2O by stoichiometry): CuO 40.20, ZnO 3.92, P2O5 36.29, As2O5 4.80, H2O 14.98, total 100.15. The empirical formula calculated on the basis of 3 H and 5 O apfu is (Cu0.91Zn0.09)Σ1.00[(P0.92As0.08)Σ1.00O3(OH)]·H2O. The crystal structure was refined by the Rietveld method to Rp = 0.0042, Rwp = 0.0061, Robs = 0.0354. Lednevite is monoclinic, space group P21/a, with a = 8.6459(6), b = 6.3951(4), c = 6.8210(5) A, β = 93.866(2)°, V = 376.28(4) A3 and Z = 4. The strongest lines of the powder X-ray diffraction pattern [d, A (I, %) (hkl)] are: 5.135 (100) (110), 4.648 (33) (011), 3.241 (28) (21-1), 3.095 (49) (211), 2.891 (27) (11-2), 2.775 (53) (112), 2.568 (29) (220). The new mineral is isotypic to the synthetic CuHPO4·H2O. Some optical and spectroscopic data, which could not be obtained on natural sample, were obtained from the synthesized material. The crystal structure of the synthetic analogue of lednevite was solved from single-crystal X-ray diffraction data and refined to R1 = 0.0173 for 1159 independent reflections with I > 2σ(I). All positions of H atoms were determined. Lednevite is named for Vladimir Sergeevich Lednev, amateur mineralogist from Barnaul (Altai Krai) who collected the sample with the new mineral.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Kasatkin

Fersman Mineralogical Museum RAS

Хат алмасуға жауапты Автор.
Email: anatoly.kasatkin@gmail.com
Ресей, Moscow

N. Zubkova

Moscow State University

Email: anatoly.kasatkin@gmail.com

Faculty of Geology

Ресей, Moscow

V. Gurzhiy

Saint Petersburg State University

Email: anatoly.kasatkin@gmail.com

Department of Crystallography, Institute of Earth Sciences

Ресей, Saint-Petersburg

R. Škoda

Masaryk University

Email: anatoly.kasatkin@gmail.com

Department of Geological Sciences, Faculty of Science

Чехия, Brno

F. Nestola

University of Padova

Email: anatoly.kasatkin@gmail.com

Department of Geosciences

Италия, Padova

A. Agakhanov

Fersman Mineralogical Museum RAS

Email: anatoly.kasatkin@gmail.com
Ресей, Moscow

N. Chukanov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: anatoly.kasatkin@gmail.com
Ресей, Chernogolovka

D. Belakovskiy

Fersman Mineralogical Museum RAS

Email: anatoly.kasatkin@gmail.com
Ресей, Moscow

D. Všianský

Masaryk University

Email: anatoly.kasatkin@gmail.com

Department of Geological Sciences, Faculty of Science

Чехия, Brno

Әдебиет тізімі

  1. Babich V.V., Zadorozhnyi M.V., Gaskov I.V., Akimtsev V.A., Naumov E.A. Murzinskoe deposit – an example of new type of gold mining in Northern Altai. In: Actual problems of ore formation and metallogeny. Novosibirsk: Geo, 2006. P. 26–28 (in Russian).
  2. Boudjada A. Structure crystalline de l’ orthophosphate monoacide de cuivre monohydrate CuHPO4 · H2O. Mater. Res. Bull. 1980. Vol. 15. P. 1083–1090 (in French).
  3. Britvin S.N., Dolivo-Dobrovolsky D.V., Krzhizhanovskaya M.G. Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. Vol. 146(3). P. 104–107 (in Russian).
  4. Chukanov N.V. Infrared spectra of mineral species: Extended library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London, 2014. 1716 pp. doi: 10.1007/978-94-007-7128-4.
  5. Chukanov N.V., Chervonnyi A.D. Infrared Spectroscopy of Minerals and Related Compounds. Springer: Cham–Heidelberg–Dordrecht–New York–London, 2006. 1109 p.
  6. Chukanov N.V., Vigasina M.F. Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. Springer-Verlag GmbH, Dordrecht, 2020. 1376 pp. doi: 10.1007/978-3-030-26803-9.
  7. Ferraris G., Ivaldi G. Bond valence vs bond length in O···O hydrogen bonds. Acta Crystallogr. 1988. Vol. B44. P. 341–344.
  8. Gagné O.C., Hawthorne F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Cryst. 2015. Vol. B71. P. 562–578.
  9. Gusev A.I. Geochemical peculiarities of gold ore mineralization of Murzinskoe ore field of Mountain Altai. Advances in current natural sciences. 2014. Vol. 9. P. 96–100 (in Russian).
  10. Gusev A.I., Gusev N.I. New data on substantial composition ores and minerals of Murzinskoe copper-gold deposit (Altai krai). Bull. Altai Branch Russian Geogr. Soc. 2018. Vol. 4. P. 27–36 (in Russian).
  11. Gusev A.I., Tabakaeva E.M. Magmatism and ore deposits of Murzinskoe gold ore field (Gorny Altai). Bull. Tomsk Polytechnic University. Geo Аssets Engineering. 2017. Vol. 328. P. 16–29 (in Russian).
  12. Holland T.J.B., Redfern S.A.T. Unit cell refinement from powder diffraction data: the use of regression diagnostics. Miner. Mag. 1997. Vol. 61. P. 65–77.
  13. Libowitzky E. (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatsh. Chem. 1999. Vol. 130. P. 1047–1059.
  14. Mandarino J.A. The Gladstone-Dale relationship. IV. The compatibility concept and its application. Canad. Miner. 1981. Vol. 41. P. 989–1002.
  15. Murzin O.V., Alyamkin A.V., Ivanov V.N. Report on the results of prospecting and appraisal work within the Murzinskiy area, carried out in 2008–2013, with the calculation of gold reserves as of 1.01.2015. 2015. 233 p. (in Russian).
  16. Petříček V., Dušek M., Palatinus L. Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic, 2006.
  17. Rigaku Oxford Diffraction, CrysAlisPro Software system, version 1.171.41.123a. 2022.
  18. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015. Vol. C71. P. 3–8.
  19. Wang A., Freeman J.J., Jolliff B.L. Understanding the Raman spectral features of phyllosilicates. J. Raman Spectr. 2015. Vol. 46. P. 829–845.
  20. Wright F.E. Computation of the optic axial angle from the three principal refractive indices. Amer. Miner. J. Earth Planet. Mat. 1951. Vol. 36. P. 543–556.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Geological map of the Murzinskoe deposit (after Murzin et al. (2015) with changes). FOV: 1.4 × 1.7 km.

Жүктеу (385KB)
3. Fig. 2. Open pit of the Murzinskoe Au deposit, 255 m level. May 2023. Photo by Vladimir S. Lednev.

Жүктеу (221KB)
4. Fig. 3. Lednevite (sky-blue) on philipsburgite (green) with quartz. FOV: 3.3 × 3.7 mm. Photo by Maria D. Milshina.

Жүктеу (251KB)
5. Fig. 4. Lednevite spherical aggregates (grey) on philipsburgite (light grey). Polished section. SEM (BSE) image.

Жүктеу (82KB)
6. Fig. 5. The infrared spectrum of the synthetic analogue of lednevite.

Жүктеу (80KB)
7. Fig. 6. The Raman spectra of a) lednevite, and b), c) its synthetic analogue excited by 532 nm laser in the 50–4000 cm–1 region. The measured spectrum is shown by dots. The curve matching to dots is a result of spectral fit as a sum of individual Voigt peaks shown below the curve. Spectra b) and c) were collected with the laser polarization perpendicular and parallel to the crystal elongation, respectively.

Жүктеу (205KB)
8. Fig. 7. Observed and calculated PXRD patterns of the sample containing lednevite (L) and spertiniite (S). The solid line corresponds to calculated data, the crosses correspond to the observed pattern, vertical bars mark all possible Bragg reflections. The upper row refers to spertiniite and the lower one to lednevite. The difference between the observed and calculated patterns is shown at the bottom.

Жүктеу (109KB)
9. Fig. 8. The crystal structure of lednevite projected along b axis (a) and c axis (b). The unit cell is outlined.

Жүктеу (145KB)
10. Fig. 9. H-bonding system in the crystal structure of the synthetic analogue of lednevite.

Жүктеу (83KB)

© Russian Academy of Sciences, 2024