The role of microRNA in degeneration of the intervertebral disc

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that negatively regulate gene expression at posttranscriptional levels. MiRNAs regulate many normal physiological processes, and also play an important role in the development of most disorders. The expression levels of miRNAs are characterized by endogenous properties and tissue specificity. These characteristics increase the likelihood that miRNAs can serve as useful clinical biomarkers in the diagnosis of certain diseases. Chronic lower back pain is usually associated with degeneration of the intervertebral disc (IDD), which is closely associated with apoptosis, impaired extracellular matrix, cell proliferation, and an inflammatory response. This process is characterized by a cascade of molecular, cellular, biochemical, and structural changes. Currently, there is no clinical therapy that shows the pathophysiology of disk degeneration. The presence of unregulated expression of miRNA in patients with degenerative disk disease indicates a vital role of miRNAs in the pathogenesis of IDD. It becomes apparent that epigenetic processes affect the evolution of IDD as much as the genetic background. Deregulated phenotypes of pulp nucleus cells, including differentiation, migration, proliferation, and apoptosis, are involved in all stages of the progression of human IDD. In this review, we will focus on the role and therapeutic value of miRNAs in IDD.

 

 


Full Text

Restricted Access

About the authors

Ozal Arzuman Beylerli

Bashkir State Medical University

Author for correspondence.
Email: obeylerli@mail.ru
ORCID iD: 0000-0002-6149-5460

Russian Federation, Rep. Bashkortostan, Ufa

MD, postgraduate student of the Department of Urology with the course IPDE

Ilgiz F. Gareev

Bashkir State Medical University

Email: ilgiz_gareev@mail.ru
ORCID iD: 0000-0002-4965-0835

Russian Federation, Rep. Bashkortostan, Ufa

MD, postgraduate student of the Department of Neurosurgery and Medical Rehabilitation with Courses IPDE

Valentin N. Pavlov

Bashkir State Medical University

Email: pavlov@bashgmu.ru
ORCID iD: 0000-0003-2125-4897

Russian Federation, Rep. Bashkortostan, Ufa

MD, PhD, Corresponding Member of the Russian Academy of Sciences, Rector, Head of the Department of Urology with the Course IPDE

References

  1. Woods BI, Vo N, Sowa G, Kang JD. Gene therapy for intervertebral disk degeneration. Orthop Clin North Am. 2011;42(4):563-574. https://doi.org/10.1016/j.ocl.2011.07.002.
  2. Blanquer SB, Grijpma DW, Poot AA. Delivery systems for the treatment of degenerated intervertebral discs. Adv Drug Deliv Rev. 2015;84:172-187. https://doi.org/10.1016/j.addr.2014.10.024.
  3. Boubriak OA, Watson N, Sivan SS, Stubbens N, Urban JP. Factors regulating viable cell density in the intervertebral disc: blood supply in relation to disc height. J Anat. 2013;222(3):341-348. https://doi.org/10.1111/joa.12022.
  4. Garcia-Cosamalon J, Fernandez-Fernandez J, Gonzalez-Martinez E. [Innervation of the intervertebral disc. (In Spanish).] Neurocirugia (Astur). 2013;24(3):121-129.
  5. Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract. 2008;8(1):18-44. https://doi.org/10.1111/j.1533-2500.2007.00171.x
  6. Furukawa T, Ito K, Nuka S, Hashimoto J, Takei H, Takahara M, Ogino T, Young MF, Shinomura T. Absence of biglycan accelerates the degenerative process in mouse intervertebral disc. Spine (Phila Pa). 1976;34(25):911-917. https://doi.org/10.1097/BRS.0b013e3181b7c7ec.
  7. Mayer JE, Iatridis JC, Chan D, Qureshi SA, Gottesman O, Hecht AC. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J. 2013;13(3):299-317. https://doi.org/10.1016/j.spinee.2013.01.041.
  8. Li Z, Liang J, Wu WK, Yu X, Yu J, Weng X, J Shen. Leptin activates RhoA/ROCK pathway to induce cytoskeleton remodeling in nucleus pulposus cells. Int J Mol Sci. 2014;15(1):1176-1188. https://doi.org/10.3390/ijms15011176.
  9. Li Z, Shen J, Wu WK, Yu X, Liang J, Qiu G, J Liu. The role of leptin on the organization and expression of cytoskeleton elements in nucleus pulposus cells. J Orthop Res. 2013;31(6):847-857. https://doi.org/10.1002/jor.22308.
  10. Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217-239. https://doi.org/10.1146/annurev-biophys-083012-130404.
  11. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92-105. https://doi.org/10.1101/gr.082701.108.
  12. Gillen AE, Gosalia N, Leir SH, Harris A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J. 2011;438(1):25-32. https://doi.org/10.1042/BJ20110672
  13. Montag J, Hitt R, Opitz L, Schulz-Schaeffer WJ, Hunsmann G, Motzkus D. Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol Neurodegener. 2009;4:36. https://doi.org/10.1186/1750-1326-4-36.
  14. Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab. 2007;91(3):209-217. https://doi.org/10.1016/j.ymgme.2007.03.011.
  15. Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J, Lee BH. miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet. 2012;21(13):2991-3000. https://doi.org/10.1093/hmg/dds129.
  16. Xie W, Li Z, Li M, Xu N, Zhang Y. miR-181a and inflammation: miRNA homeostasis response to inflammatory stimuli in vivo. Biochem Biophys Res. Commun. 2013;430(2):647-652. https://doi.org/10.1016/j.bbrc.2012.11.097.
  17. Huang GF, Zou J, Shi J, Zhang D, Peng H, Zhang Q, Gao Y, Wang B, Zhang T. Electroacupuncture stimulates remodeling of extracellular matrix by inhibiting apoptosis in a rabbit model of disc degeneration. Evid Based Complement Alternat Med. 2015;2015:386012. https://doi.org/10.1155/2015/386012.
  18. Yang SD, Yang DL, Sun YP, Wang BL, Ma L, Feng SQ, Ding WY. 17beta-estradiol protects against apoptosis induced by interleukin-1beta in rat nucleus pulposus cells by down-regulating MMP-3 and MMP-13. Apoptosis. 2015;20(1):348-357. https://doi.org/10.1007/s10495-015-1086-4.
  19. Ma X, Lin Y, Yang K, Yue B, Xiang H, Chen B. Effect of lentivirus-mediated surviving transfection on the morphology and apoptosis of nucleus pulposus cells derived from degenerative human disc in vitro. Int J Mol Med. 2015;36(1):186-194. https://doi.org/10.3892/ijmm.2015.2225.
  20. Ding F, Shao ZW, Xiong LM. Cell death in intervertebral disc degeneration. Apoptosis. 2013;18(7):777-785. https://doi.org/10.1007/s10495-013-0839-1.
  21. Wang X, Zhang X, Ren XP, Chen J, Liu H, Yang J, Medvedovic M, Hu Z, Fan GC. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation. 2010;122(13):1308-1318. https://doi.org/10.1161/CIRCULATIONAHA.110.964684.
  22. Li XT, Wang HZ, Wu ZW, Yang TQ, Zhao ZH, Chen GL, Xie XS, Li B, Wei YX, Huang YL, Zhou YX, Du ZW. miR-494-3p regulates cellular proliferation, invasion, migration, and apoptosis by PTEN/AKT signaling in human glioblastoma cells. Cell Mol Neurobiol. 2015;35(5):679-687. https://doi.org/10.1007/s10571-015-0163-0.
  23. Bai Y, Sun Y, Peng J, Sun Y, Peng J, Liao H, Gao H, Guo Y, Guo L. Overexpression of secretagogin inhibits cell apoptosis and induces chemoresistance in small cell lung cancer under the regulation of miR-494. Oncotarget. 2014;5(17):7760-7775. https://doi.org/10.18632/oncotarget.2305.
  24. Wang T, Li P, Ma X, Tian P, Han C, Zang J, Kong J, Yan H. MicroRNA-494 inhibition protects nucleus pulposus cells from TNF-alpha-induced apoptosis by targeting JunD. Biochimie. 2015;115:1-7. https://doi.org/10.1016/j.biochi.2015.04.011.
  25. Liu G, Cao P, Chen H, Yuan W, Wang J, Tang X. MiR-27a regulates apoptosis in nucleus pulposus cells by targeting PI3K. PLoS One. 2013;8(9):e75251. https://doi.org/10.1371/journal.pone.0075251.
  26. Zhang J, Yu XH, Yan YG, Wang C, Wang WJ. PI3K/Akt signaling in osteosarcoma. Clin Chim Acta. 2015;444:182-192. https://doi.org/10.1016/j.cca.2014.12.041.
  27. Li Z, Shen J, Wu WK, Shen J, Wu WK, Yu X, Liang J, Qiu G, Liu J. Leptin induces cyclin D1 expression and proliferation of human nucleus pulposus cells via JAK/STAT, PI3K/Akt and MEK/ERK pathways. PLoS One. 2012;7(12):e53176. https://doi.org/10.1371/journal.pone.0053176.
  28. Karachi A, Fazeli M, Karimi MH, Geramizadeh B, Moravej A, Ebrahimnezhad S, Afshari A. Evaluation of immunomodulatory effects of mesenchymal stem cells soluble factors on miR-155 and miR-23b expression in mice dendritic cells. Immunol Investig. 2015;44(5):427-437. https://doi.org/10.3109/08820139.2015.1017046.
  29. Mohammad F, DeInnocentes P, Bird RC. Altered microRNA expression profiles and regulation of INK4A/CDKN2A tumor suppressor genes in canine breast cancer models. J Cell Biochem. 2015;116(12):2956-2969. https://doi.org/10.1002/jcb.25243.
  30. Wang HQ, Yu XD, Liu ZH, Cheng X, Samartzis D, Jia LT, Wu SX, Huang J, Chen J, Luo ZJ. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol. 2011;225(2):232-242. https://doi.org/10.1002/path.2931.
  31. Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis. 2012;33(5):1113-1120. https://doi.org/10.1093/carcin/bgs113.
  32. Ma L. Role of miR-10b in breast cancer metastasis. Breast Cancer Res. 2010;12(5):210. https://doi.org/10.1186/bcr2720.
  33. Li QJ, Zhou L, Yang F, Wang GX, Zheng H, Wang DS, He Y, Dou KF. MicroRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumour Biol. 2012;33(5):1455-1465. https://doi.org/10.1007/s13277-012-0396-1.
  34. Frampton AE, Krell J, Zhang Y, Stebbing J, Castellano L, Jiao LR. The role of miR-10b in metastatic pancreatic ductal adenocarcinoma. Surgery. 2012;152(5):936-938. https://doi.org/10.1016/j.surg.2012.03.021.
  35. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682-688. https://doi.org/10.1038/nature06174.
  36. Nakata K, Ohuchida K, Mizumoto K, Kayashima T, Ikenaga N, Sakai H, Lin C, Fujita H, Otsuka T, Aishima S, Nagai E, Oda Y, Tanaka M. MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery. 2011;150(5):916-922. https://doi.org/10.1016/j.surg.2011.06.017.
  37. Li Z, Lei H, Luo M, Wang Y, Dong L, Ma Y, Liu C, Song W, Wang F, Zhang J, Shen J, Yu J. DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. 2015;18(1):43-54. https://doi.org/10.1007/s10120-014-0340-8.
  38. Yu X, Li Z, Shen J, Wu WK, Liang J, Weng X, Qiu G. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One. 2013;8(4):e83080. https://doi.org/10.1371/journal.pone.0083080.
  39. Haigl B, Vanas V, Setinek U, Hegedus B, Gsur A, Sutterlсuty-Fall H. Expression of microRNA-21 in non-small cell lung cancer tissue increases with disease progression and is likely caused by growth conditional changes during malignant transformation. Int J Oncol. 2014;44(12):1325-1334. https://doi.org/10.3892/ijo.2014.2272.
  40. Huang YH, Lin YH, Chi HC, Liao CH, Liao CJ, Wu SM, Chen CY, Tseng YH, Tsai CY, Lin SY, Hung YT, Wang CJ, Lin CD, Lin KH. Thyroid hormone regulation of miR-21 enhances migration and invasion of hepatoma. Cancer Res. 2013;73(8):2505-2517. https://doi.org/10.1158/0008-5472.CAN-12-2218.
  41. Liu H, Huang X, Liu X, Xiao S, Zhang Y, Xiang T. miR-21 promotes human nucleus pulposus cell proliferation through PTEN/AKT signaling. Int J Mol Sci. 2014;15(3):4007-4018. https://doi.org/10.3390/ijms15034007.
  42. Janeczko L, Janeczko M, Chrzanowski R, Zieliński G. The role of polymorphisms of genes encoding collagen IX and XI in lumbar disc disease. Neurol Neurochir Pol. 2014;48(1):60-62. https://doi.org/10.1016/j.pjnns.2013.04.001.
  43. Maitre CLL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans. 2007;35(Pt 4):652-655. https://doi.org/10.1042/BST0350652.
  44. Ozkanli S, Kaner T, Efendioglu M, Basaran R, Senol M, Zemheri E, Gezen AF. The relation of matrix metalloproteinase 1, 2, 3 expressions with clinical and radiological findings in primary and recurrent lumbar disc herniations. Turk Neurosurg. 2015;25(1):111-116. https://doi.org/10.5137/1019-5149.JTN.11276-14.1.
  45. Xu H, Mei Q, Xu B, Liu G, Zhao J. Expression of matrix metalloproteinases is positively related to the severity of disc degeneration and growing age in the East Asian lumbar disc herniation patients. Cell Biochem Biophys. 2014;70(2):1219-1225. https://doi.org/10.1007/s12013-014-0045-y.
  46. Vo NV, Hartman RA, Yurube T, Jacobs LJ, Sowa GA, Kang JD. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J. 2013;13(3):331-341. https://doi.org/10.1016/j.spinee.2012.02.027.
  47. Wang Z, Hutton WC, Yoon ST. Bone morphogenetic protein-7 antagonizes tumor necrosis factor-alpha-induced activation of nuclear factor kappaB and up-regulation of the ADAMTS, leading to decreased degradation of disc matrix macromolecules aggrecan and collagen II. Spine J. 2014;14(3):505-512. https://doi.org/10.1016/j.spinee.2013.08.016.
  48. Zhao CQ, Zhang YH, Jiang SD, H Li, Jiang LS, Dai LY. ADAMTS-5 and intervertebral disc degeneration: the results of tissue immunohistochemistry and in vitro cell culture. J Orthop Res. 2011;29(5):718-725. https://doi.org/10.1002/jor.21285.
  49. Kao TH, Peng YJ, Tsou HK, Salter DM, Lee HS. Nerve growth factor promotes expression of novel genes in intervertebral disc cells that regulate tissue degradation: laboratory investigation. J Neurosurg Spine. 2014;21(4):653-661. https://doi.org/10.3171/2014.6.SPINE13756.
  50. Chen J, Liu Z, Zhong G, Qian L, Li Z, Qiao Z. Hypertrophy of ligamentum flavum in lumbar spine stenosis is associated with increased miR-155 level. Dis Markers. 2014;2014:786543. https://doi.org/10.1155/2014/786543.
  51. Tsirimonaki E, Fedonidis C, Pneumaticos SG, Tragas AA, Michalopoulos I, Mangoura D. PKCepsilon signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells. PLoS One. 2013;8(11):e82045. https://doi.org/10.1371/journal.pone.0082045.
  52. Гареев И.Ф., Бейлерли О.А., Павлов В.Н., Zhao S., Chen X., Zheng Z., Shen C., Sun J. Наночастицы: новый подход в диагностике и терапии глиальных опухолей головного мозга. Креативная хирургия и онкология. 2019;9(1):66-74. [Gareev IF, Beylerli OA, Pavlov VN, Zhao S, Chen X, Zheng Z, Shen C, Sun J. Nanoparticles: a new approach to the diagnosis and treatment of cerebral glial tumours. Kreativnaya khirurgiya i onkologiya. 2019;9(1):66-74. (In Russ.)] https://doi.org/10.24060/2076-3093-2019-9-1-66-74.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 81

PDF (Russian) - 2

Cited-By


Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2020 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies