Dynamic fixation of the lumbar spine dynamic fixation of the lumbar spine

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The review of modern literature data on the use of dynamic fixation in degenerative diseases of intervertebral discs and facet joints of the lumbar spine is presented. The frequent cause of temporary loss of working ability and primary disability, poor results of conservative treatment for degenerative changes in the lumbar segments stipulate the high medical and social significance of this problem. Quite often the use of classical decompression techniques and rigid fusion does not eliminate clinical symptoms on account of pseudarthrosis formation in the operated segment and significant degeneration development in the adjacent one. The use of dynamic implants is aimed at restoring spatial segmental relationships with the preservation of natural biomechanics of the spine. Taking into consideration the variety of constructions and the high rate of their introduction into practice, the literature data present conflicting information on the results of their application. The authors expound modern data on the clinical results and instrumental potentialities of various dynamic devices application. The topical unsolved issues that necessitate the conduction of long-term multicenter clinical studies on the management of this pathology are identified.

Full Text

Restricted Access

About the authors

V. A Byvaltsev

Irkutsk State Medical University; Road Clinical Hospital at Irkutsk Passenger railway station; Irkutsk Scientific Center of Surgery and Traumatology; Irkutsk State Medical Academy for Postgraduate Education

Irkutsk, Russia

A. A Kalinin

Irkutsk State Medical University; Road Clinical Hospital at Irkutsk Passenger railway station

Irkutsk, Russia

Yu. Ya Pestryakov

Irkutsk State Medical University

Irkutsk, Russia

M. A Aliev

Irkutsk State Medical University

Irkutsk, Russia


  1. Абакиров М.Д., Круглов И.А., Абдурахманов Р.Р. и др. Эндопротезирование межпозвонковых дисков поясничного отдела позвоночника. Хирургия позвоночника. 2016; 13 (1): 59-66. https://doi.org/10.14531/ss2016.1.59-66.
  2. Бывальцев В.А., Белых Е.Г., Калинин А.А., Сороковиков В.А. Клиника, диагностика и хирургическое лечение грыж межпозвонковых дисков пояснично-крестцового отдела позвоночника. Иркутск: ИНЦХТ; 2016.
  3. Бывальцев В.А., Калинин А.А., Шепелев В.В. Нестабильные формы дегенеративных заболеваний позвоночно-двигательных сегментов пояснично-крестцового отдела позвоночника: диагностика и хирургическое лечение. Новосибирск: Наука; 2017.
  4. Kaner T., Sasani M., Oktenoglu T. et al. Utilizing dynamic rods with dynamic screws in the surgical treatment of chronic instability: a prospective clinical study. Turk Neurosurg. 2009;19(4):319-326.
  5. Kaner T., Ozer A.F. Dynamic stabilization for challenging lumbar degenerative diseases of the spine: a review of the literature. Adv Orthop. 2013;2013:753470. https://doi.org/10.1155/2013/753470.
  6. Panjabi M.M. Clinical spinal instability and low back pain. J Electromyogr Kinesiol. 2003;13(4):371-379.
  7. Hu R.W., Jaglal S., Axcell T., Anderson G. A population based study of reoperations after back surgery. Spine (Phila Pa 1976). 1997;22(19):2265-2271.
  8. Бывальцев В.А., Калинин А.А., Оконешникова А.К. и др. Фасеточная фиксация в комбинации с межтеловым спондилодезом: сравнительный анализ и клинический опыт нового способа хирургического лечения пациентов с дегенеративными заболеваниями поясничного отдела позвоночника. Вестник РАМН. 2016;71(5):375-383 https://doi.org/10.15690/vramn738.
  9. Mummaneni P.V., Haid R.W., Rodts G.E. Lumbar interbody fusion: state-of-the-art technical advances. J Neurosurg. 2004;101(1):24-30. https://doi.org/10.3171/spi.2004.1.1.0024.
  10. Ozer A.F., Oktenoglu T., Egemen E. et al. Comparison of the rigid rod system with modular plate with the finite element analysis in short-segment posterior stabilization in the lower lumbar region. Turk Neurosurg. 2017;27(4):610-616. https://doi.org/10.5137/1019-5149.JTN.16203-15.1.
  11. Sengupta D., Mulholland R.C., Pimenta L. Prospective clinical study of dynamic stabilization with the DSS system in isolated activity related mechanical low back pain, with outcome at minimum 2-year follow-up. Spine J. 2006;6(5):147.
  12. Xia X.P., Chen H.L., Cheng H.B. Prevalence of adjacent segment degeneration after spine surgery: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2013;38(7):597-608. https://doi.org/10.1097/BRS.0b013e318273a2ea.
  13. Gomleksiz C., Sasani M., Oktenoglu T., Ozer A.F. A short history of posterior dynamic stabilization. Adv Orthop. 2012;2012:629698. https://doi.org/10.1155/2012/629698
  14. Khoueir P., Kim K.A., Wang M.Y. Classification of posterior dynamic stabilization devices. Neurosurg Focus. 2007;22(1):E3.
  15. Chou D., Lau D., Skelly A., Ecker E. Dynamic stabilization versus fusion for treatment of degenerative spine conditions. Evid Based Spine Care J. 2011;2(3):33-42. https://doi.org/10.1055/s-0030-1267111.
  16. Бывальцев В.А., Калинин А.А., Пестряков Ю.Я. и др. Анализ результатов применения тотальной артропластики межпозвонкового диска пояснично-крестцового отдела позвоночника протезом M6-L: мультицентровое исследование. Вестник РАМН. 2017;72(5):393-402. https://doi.org/10.15690/vramn782.
  17. Gamradt S.C., Wang J.C. Lumbar disc arthroplasty. Spine J. 2005;5(1):95-103. https://doi.org/10.1016/j.spinee.2004.09.006.
  18. Link H.D. History, design and biomechanics of the LINK SB Charite artificial disc. Arthroplasty of the Spine. Springer; 2004. https://doi.org/10.1007/s00586-002-0475-x.
  19. Zigler J.E., Delamarter R.B. Five-year results of the prospective, randomized, multicenter, Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential arthrodesis for the treatment of single-level degenerative disc disease. J Neurosurg Spine. 2012;17(6):493-501. https://doi.org/10.3171/2012.9.SPINE11498
  20. Mathews H.H., LeHuec J.-C., Friesem T. et al. Design rationale and biomechanics of Maverick Total Disc arthroplasty with early clinical results. Spine J. 2004;4(6):S268-S275. https://doi.org/10.1016/j.spinee.2004.07.017.
  21. Park C.K. Total disc replacement in lumbar degenerative disc diseases. J Korean Neurosurg Soc. 2015;58(5):401-411. https://doi.org/10.3340/jkns.2015.58.5.401.
  22. Vital J.M., Boissière L. Total disc replacement. Orthop Traumatol Surg Res. 2014;100:S1-S14. https://doi.org/10.1016/j.otsr.2013.06.018.
  23. Daftari T.K., Chinthakunta S.R., Ingalhalikar A. et al. Kinematics of a selectively constrained radiolucent anterior lumbar disc: comparisons to hybrid and circumferential fusion. Clin Biomech. (Bristol, Avon). 2012;27(8):759-765. https://doi.org/10.1016/j.clinbiomech.2012.05.010.
  24. Erkan S., Rivera Y., Wu C. et al. Biomechanical comparison of a two-level Maverick disc replacement with a hybrid one-level disc replacement and one-level anterior lumbar interbody fusion. Spine J. 2009;9(10):830-835. https://doi.org/10.1016/j.spinee.2009.04.014.
  25. Hoff E.K., Strube P., Pumberger M. et al. ALIF and total disc replacement versus 2-level circumferential fusion with TLIF: a prospective, randomized, clinical and radiological trial. Eur Spine J. 2016;25(5):1558-1566. https://doi.org/10.1007/s00586-015-3852-y.
  26. Berg S., Gillberg-Aronsson N. Clinical outcomes after treatment with disc prostheses in three lumbar segments compared to one- or two segments. Int J Spine Surg. 2015;9:49. https://doi.org/10.14444/2049.
  27. Clavel P., Ungureanu G., Catalá I. et al. Health-related quality of life in patients undergoing lumbar total disc replacement: A comparison with the general population. Clin Neurol Neurosurg. 2017;160:119-124. https://doi.org/10.1016/j.clineuro.2017.07.007.
  28. Siepe C.J., Heider F., Wiechert K. et al. Mid- to long-term results of total lumbar disc replacement: a prospective analysis with 5- to 10-year follow-up. Spine J. 2014;14(8):1417-1431. https://doi.org/10.1016/j.spinee.2013.08.028.
  29. Tropiano P., Huang R.C., Girardi F.P. et al. Lumbar total disc replacement. Seven to eleven-year follow-up. J Bone Joint Surg Am. 2005;87(3):490-496. https://doi.org/10.2106/JBJS.C.01345.
  30. Park C.K., Ryu K.S., Jee W.H. Degenerative changes of discs and facet joints in lumbar total disc replacement using ProDisc II: minimum two-year follow-up. Spine (Phila Pa 1976). 2008;33(16):1755-1761. https://doi.org/10.1097/BRS.0b013e31817b8fed.
  31. Park C.K., Ryu K.S., Lee K.Y., Lee H.J. Clinical outcome of lumbar total disc replacement using ProDisc-L in degenerative disc disease: minimum 5-year follow-up results at a single institute. Spine (Phila Pa 1976). 2012;37(8):672-677. https://doi.org/10.1097/BRS.0b013e31822ecd85.
  32. Guyer R.D., McAfee P.C., Banco R.J. et al. Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J. 2009;9(5):374-386. https://doi.org/10.1016/j.spinee.2008.08.007.
  33. Van den Eerenbeemt K.D., Ostelo R.W., van Royen B.J. et al. Total disc replacement surgery for symptomatic degenerative lumbar disc disease: a systematic review of the literature. Eur Spine J. 2010;9(8):1262-1280. https://doi.org/10.1007/s00586-010-1445-3.
  34. Mattei T.A., Beer J., Teles A.R. et al. Clinical outcomes of total disc replacement versus anterior lumbar interbody fusion for surgical treatment of lumbar degenerative disc disease. Global Spine J. 2017;7(5):452-459. https://doi.org/10.1177/2192568217712714.
  35. Helgeson M.D., Bevevino A.J., Hilibrand A.S. Update on the evidence for adjacent segment degeneration and disease. Spine J. 2013;13(3):342-351. https://doi.org/10.1016/j.spinee.2012.12.009.
  36. Zigler J.E., Glenn J., Delamarter R.B. Five-year adjacent-level degenerative changes in patients with single-level disease treated using lumbar total disc replacement with ProDisc-L versus circumferential fusion. J Neurosurg Spine. 2012;17(6):504-511. https://doi.org/10.3171/2012.9.SPINE11717.
  37. Plais N., Thevenot X., Cogniet A. et al. Maverick total disc arthroplasty performs well at 10 years follow-up: a prospective study with HRQL and balance analysis. Eur Spine J. 2018;27(3):720-727. https://doi.org/10.1007/s00586-017-5065-z.
  38. Laugesen L.A., Paulsen R.T., Carreon L. et al. Patient-reported outcomes and revision rates at a mean follow-up of 10 years after lumbar total disc replacement. Spine (Phila Pa 1976). 2017;42(21):1657-1663. https://doi.org/10.1097/BRS.0000000000002174.
  39. Park S.J., Lee C.S., Chung S.S. et al. Long term outcomes following lumbar total disc replacement using ProDisc-II average 10-year follow-up at a single institute. Spine (Phila Pa 1976). 2016; 41 (11): 971-977. https://doi.org/10.1097/BRS.0000000000001527.
  40. Lu S.B., Hai Y., Kong C. et al. An 11-year minimum follow-up of the Charite III lumbar disc replacement for the treatment of symptomatic degenerative disc disease. Eur Spine J. 2015;24(9):2056-2064. https://doi.org/10.1007/s00586-015-3939-5.
  41. Guyer R.D., Pettine K., Roh J.S. et al. Five-year follow-up of a prospective, randomized trial comparing two lumbar total disc replacements. Spine (Phila Pa 1976). 2016;41(1):3-8. https://doi.org/10.1097/BRS.0000000000001168
  42. Yue J.J., Garcia R., Miller L.E. The activL(®) artificial disc: a next generation motion-preserving implant for chronic lumbar discogenic pain. Med Devices (Auckl). 2016;9:75-84. https://doi.org/10.2147/MDER.S102949.
  43. Malham G.M., Parker R.M. Early experience with lateral lumbar total disc replacement: Utility, complications and revision strategies. J Clin Neurosci. 2017;39:176-183. https://doi.org/10.1016/j.jocn.2017.01.033.
  44. Sasani M., Aydin A.L., Oktenoglu T. et al. The combined use of a posterior dynamic transpedicular stabilization system and a prosthetic disc nucleus device in treating lumbar degenerative disc disease with disc herniations. SAS J. 2008;2(3):130-136. https://doi.org/10.1016/SASJ-2008-0008-NT.
  45. Selviaridis P., Foroglou N., Tsitlakidis A. et al. Long-term outcome after implantation of prosthetic disc nucleus device (PDN) in lumbar disc disease. Hippokratia. 2010;14(3):176-184.
  46. Zhang Z.M., Zhao L., Qu D.B., Jin D.D. Artificial nucleus replacement: surgical and clinical experience. Orthop Surg. 2009;1(1):52-57. https://doi.org/10.1111/j.1757-7861.2008.00010.x.
  47. Alpízar-Aguirre A., Mireles-Cano J.N., Rosales-Olivares M. et al. Clinical and radiological follow-up of nubac disc prosthesis. Preliminary report. Cir Cir 2008;76(4):311-315.
  48. Brown T., Bao Q.B., Kilpela T., Songer M. An in vitro biotribological assessment of NUBAC, a polyetheretherketone-on-polyetheretherketone articulating nucleus replacement device: methodology and results from a series of wear tests using different motion profiles, test frequencies, and environmental conditions. Spine (Phila Pa 1976). 2010;35(16):E774-81. https://doi.org/10.1097/BRS.0b013e3181d59e45.
  49. Bao Q.B., Songer M., Pimenta L. et al. Nubac disc arthroplasty: preclinical studies and preliminary safety and efficacy evaluations. SAS J. 2007;1(1):36-45. https://doi.org/10.1016/SASJ-2006-0007-RR.
  50. Sieber A.N., Kostuik J.P. Concepts in nuclear replacement. Spine J. 2004;4(6 Suppl):322S-4S. https://doi.org/10.1016/j.spinee.2004.07.029.
  51. Ahrens M., Tsantrizos A., Donkerstloot P. et al. Nucleus replacement with the dascor disc arthroplasty device. Spine (Phila Pa 1976). 2009;34(13):1376-1384. https://doi.org/10.1097/BRS.0b013e3181a3967f.
  52. Kanayama M., Hashimoto T., Shigenobu K. et al. A minimum 10-year follow-up of posterior dynamic stabilization using graf artificial ligament. Spine (Phila Pa 1976). 2007;32(18):1992-1996. https://doi.org/10.1097/BRS.0b013e318133faae.
  53. Sengupta D.K., Mulholland R.C. Fulcrum assisted soft stabilization system: a new concept in the surgical treatment of degenerative low back pain. Spine (Phila Pa 1976). 2005;30(9):1019-1029.
  54. Hadlow S.V., Fagan A.B., Hillier T.M., Fraser R.D. The graft ligamentoplasty procedure: comparison with posterolateral fusion in the management of low back pain. Spine (Phila Pa 1976). 1998;23(l0):1172-1179.
  55. Choi Y., Kim K., So K. Adjacent segment instability after treatment with a graf ligament at minimum 8 years’ follow up. Clin Orthop Relat Res. 2009;467(7):1740-1746. https://doi.org/10.1007/s11999-009-0887-6.
  56. Grevitt M.P., Gardner A.D., Spilsbury J. et al. The Graf stabilisation system: early results in 50 patients. Eur Spine J. 1995;4(3):169-175.
  57. Markwalder T.M., Wenger M. Dynamic stabilization of lumbar motion segments by use of Graf ’s ligaments: results with an average follow-up of 7.4 years in 39 highly selected, consecutive patients. Acta Neurochir (Wien). 2003;145(3):209-214. https://doi.org/10.1007/s00701-002-1056-9.
  58. Stoll T.M., Dubois G., Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur. Spine J. 2002;11 Suppl 2:S170-178. https://doi.org/10.1007/s00586-002-0438-2.
  59. Cakir B., Carazzo C., Schmidt R. et al. Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine. Spine (Phila Pa 1976). 2009;34(12):1287-1291. https://doi.org/10.1097/BRS.0b013e3181a136ab.
  60. Cienciala J., Chaloupka R., Repko M., Krbec M. Dynamic neutralization using the Dynesys system for treatment of degenerative disc disease of the lumbar spine. Acta Chir Orthop Traumatol Cech. 2010;77(3):203-208 [Article in Czech].
  61. Grob D., Benini A., Junge A., Mannion A.F. Clinical experience with the dynesyssemirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine (Phila Pa 1976). 2005;30(3):324-331.
  62. Schaeren S., Broger I., Jeanneret B. Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine (Phila Pa 1976). 2008;33(18):E636-642. https://doi.org/10.1097/BRS.0b013e31817d2435.
  63. Putzier M., Hoff E., Tohtz S. et al. Dynamic stabilization adjacent to single-level fusion: part II. No clinical benefit for asymptomatic, initially degenerated adjacent segments after 6 years follow-up. Eur Spine J. 2010;19(12):2181-2189. https://doi.org/10.1007/s00586-010-1517-4.
  64. Strube P., Tohtz S., Hoff E. et al. Dynamic stabilization adjacent to single-level fusion: part I. Biomechanical effects on lumbar spinal motion. Eur Spine J. 2010;19(12):2171-2180. https://doi.org/10.1007/s00586-010-1549-9.
  65. Zhang L., Shu X., Duan Y. et al. Effectiveness of ISOBAR TTL semi-rigid dynamic stabilization system in treatment of lumbar degenerative disease. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2012;26(9):1066-1070 [Article in Chinese].
  66. Sangiorgio S.N., Sheikh H., Borkowski S.L. et al. Comparison of three posterior dynamic stabilization devices. BRS. 2011;36(19):E1251-1258. https://doi.org/10.1097/BRS.0b013e318206cd84.
  67. Barrey C., Perrin G., Champain S. Pedicle-screw-based dynamic systems and degenerative lumbar diseases: biomechanical and clinical experiences of dynamic fusion with Isobar TTL. ISRN Orthop. 2013;2013:183702. https://doi.org/10.1155/2013/183702.
  68. Qian J., Bao Z.H., Li X. et al. Short-term therapeutic efficacy of the Isobar TTL dynamic internal fixation system for the treatment of lumbar degenerative disc diseases. Pain Physician. 2016;19(6):E853-861.
  69. Gao J., Zhao W., Zhang X. et al. MRI analysis of the Isobar TTL internal fixation system for the dynamic fixation of intervertebral discs: a comparison with rigid internal fixation. J Orthop Surg Res. 2014;9:43. https://doi.org/10.1186/1749-799X-9-43.
  70. Coe J.D., Kitchel S.H., Meisel H.J. et al. NFlex dynamic stabilization system: two year clinical outcomes of multi-center study. J Korean Neurosurg Soc. 2012;51(6):343-349. https://doi.org/10.3340/jkns.2012.51.6.343.
  71. Gornet M.F., Chan F.W., Coleman J.C. et al. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs. J Biomech Eng. 2011;133(8):081009. https://doi.org/10.1115/1.4004862.
  72. Ormond D.R., Albert Jr. L., Das K. Polyetheretherketone (PEEK) rods in lumbar spine degenerative disease: a case series. Clin Spine Surg. 2016;29(7):E371-375. https://doi.org/10.1097/BSD.0b013e318277cb9b.
  73. Abode-Iyamah K., Kim S.B., Grosland N. et al. Spinal motion and intradiscal pressure measurements before and after lumbar spine instrumentation with titanium or PEEK rods. J Clin Neurosci. 2014;21(4):651-655. https://doi.org/10.1016/j.jocn.2013.08.010.
  74. Obid P., Danyali R., Kueny R. et al. Hybrid instrumentation in lumbar spinal fusion: a biomechanical evaluation of three different instrumentation techniques. Global Spine J. 2017;7(1):47-53. https://doi.org/10.1055/s-0036-1583945.
  75. Tahal D., Madhavan K., Chieng L.O. et al. Metals in spine. World Neurosurg. 2017;100:619-627. https://doi.org/10.1016/j.wneu.2016.12.105.
  76. Lukina E., Kollerov M., Meswania J. et al. Fretting corrosion behavior of nitinol spinal rods in conjunction with titanium pedicle screws. Mater Sci. Eng. C Mater Biol Appl. 2017;72:601-610. https://doi.org/10.1016/j.msec.2016.11.120.
  77. Колесов С.В., Колбовский Д.А., Казьмин А.И., Морозова Н.С. Применение стержней из нитинола при хирургическом лечении дегенеративных заболеваний позвоночника с фиксацией пояснично-крестцового перехода. Хирургия позвоночника. 2016;13(1):41-49. https://doi.org/10.14531/ss2016.1.41-49.
  78. Давыдов Е.А., Мушкин А.Ю., Зуев И.В. и др. Применение биологически и механически совместимых имплантатов из нитинола для хирургического лечения повреждений и заболеваний позвоночника и спинного мозга. Гений ортопедии. 2010;1:5-11.
  79. Зуев И.В., Щедренок В.В., Орлов С.В. и др. Опыт динамической фиксации нитиноловыми имплантатами при дегенеративных заболеваниях позвоночника. Гений ортопедии. 2014;2:30-38.
  80. Schmoelz W., Onder U., Martin A., Strempel A.V. Nonfusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment. Eur Spine J. 2009;18(10):1478-1485. https://doi.org/10.1007/s00586-009-1052-3.
  81. Bozkus H., Senoglu M., Baek S. et al. Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization. J Neurosurg Spine. 2010;12(2):183-189. https://doi.org/10.3171/2009.9.SPINE0951.
  82. Kaner T., Sasani M., Oktenoglu T. et al. Clinical outcomes of degenerative lumbar spinal stenosis treated with lumbar decompression and the Cosmic “semirigid” posterior system. SAS J. 2010;4(4):99-106. https://doi.org/10.1016/j.esas.2010.09.003.
  83. Ozer A.F., Oktenoglu T., Egemen E. et al. Lumbar single-level dynamic stabilization with semi-rigid and full dynamic systems: a retrospective clinical and radiological analysis of 71 patients. Clin Orthop Surg. 2017;9(3):310-316. https://doi.org/10.4055/cios.2017.9.3.310.
  84. Stoffel M., Behr M., Reinke A. et al. Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic-system: a prospective observation. Acta Neurochir. (Wien). 2010;152(5):835-843. https://doi.org/10.1007/s00701-009-0583-z.
  85. Erbulut D.U., Kiapour A., Oktenoglu T. et al. A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw. J Biomech Eng. 2014;136(5):051007. https://doi.org/10.1115/1.4027060.
  86. Yu A.K., Siegfried C.M., Chew B. et al. Biomechanics of posterior dynamic fusion systems in the lumbar spine: implications for stabilization with improved arthrodesis. Clin Spine Surg. 2016;29(7):E325-330. https://doi.org/10.1097/BSD.0b013e31827588b1.
  87. Panjabi M.M., Timm J.P. Development of Stabilimax NZ from biomechanical principles. SAS J. 2007;1(1):2-7. https://doi.org/10.1016/SASJ-2006-0006-CO.
  88. Yue J.J., Timm J.P., Panjabi M.M., Jaramillo-de la Torre J. Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system. Neurosurg Focus. 2007;22(1):E12.
  89. Bono C.M., Kadaba M., Vaccaro A.R. Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. J Spinal Disord Tech. 2009;22(5):376-383. https://doi.org/10.1097/BSD.0b013e31817c6489.
  90. Wilke H.J., Schmidt H., Werner K. et al. Biomechanical evaluation of a new total posterior element replacement system. Spine (Phila Pa 1976). 2006;31(24):2790-2796. https://doi.org/10.1097/01.brs.0000245872.45554.c0.
  91. McAfee P., Khoo L.T., Pimenta L. et al. Treatment of lumbar spinal stenosis with a total posterior arthroplasty prosthesis: implant description, surgical technique, and a prospective report on 29 patients. Neurosurg Focus. 2007;22(1):E13.
  92. Anekstein Y., Floman Y., Smorgick Y. et al. Seven years follow-up for total lumbar facet joint replacement (TOPS) in the management of lumbar spinal stenosis and degenerative spondylolisthesis. Eur Spine J. 2015;24(10):2306-2314. https://doi.org/10.1007/s00586-015-3850-0.
  93. Phillips F.M., Tzermiadianos M.N., Voronov L.I. et al. Effect of the total facet arthroplasty system after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments. Spine J. 2009;9(1):96-102. https://doi.org/10.1016/j.spinee.2008.01.010.
  94. Voronov L.I., Havey R.M., Rosler D.M. et al. L5-S1 segmental kinematics after facet arthroplasty. SAS J. 2009;3(2):50-58. https://doi.org/10.1016/SASJ-2009-0001-RR.
  95. Sjovold S.G., Zhu Q., Bowden A. et al. Biomechanical evaluation of the Total Facet Arthroplasty System® (TFAS®): loading as compared to a rigid posterior instrumentation system. Eur Spine J. 2012;21(8):1660-1673. https://doi.org/10.1007/s00586-012-2253-8.
  96. Goel V.K., Mehta A., Jangra J. et al. Anatomic Facet Replacement System (AFRS) restoration of lumbar segment mechanics to intact: a finite element study and in vitro cadaver investigation. SAS J. 2007;1(1):46-54. https://doi.org/10.1016/SASJ-2006-0010-RR.
  97. Senegas J. Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the wallis system. Eur Spine J. 2002;11(2):S164-169. https://doi.org/10.1007/s00586-002-0423-9.
  98. Jiang Y.Q., Che W., Wang H.R. et al. Minimum 5 year follow-up of multi-segmental lumbar degenerative disease treated with discectomy and the Wallis interspinous device. J Clin Neurosci. 2015;22(7):1144-1149. https://doi.org/10.1016/j.jocn.2014.12.016.
  99. Zucherman J.F., Hsu K.Y., Hartjen C.A. et al. A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine (Phila Pa 1976). 2005;30(12):1351-1358.
  100. Verhoof O.J., Bron J.L., Wapstra F.H., Van Royen B.J. High failure rate of the interspinous distraction device (X Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis. Eur Spine J. 2008;17(2):188-192. https://doi.org/10.1007/s00586-007-0492-x.
  101. Puzzilli F., Gazzeri R., Galarza M. et al. Interspinous spacer decompression (X-STOP) for lumbar spinal stenosis and degenerative disk disease: a multicenter study with a minimum 3-year follow-up. Clin Neurol Neurosurg. 2014;124:166-174. https://doi.org/10.1016/j.clineuro.2014.07.004.
  102. Lønne G., Johnsen L.G., Rossvoll I. et al. Minimally invasive decompression versus X-Stop in lumbar spinal stenosis: a randomized controlled multicenter study. Spine (Phila Pa 1976). 2015;40(2):77-85. https://doi.org/10.1097/BRS.0000000000000691.
  103. Lu K., Liliang P.C., Wang H.K. et al. Clinical outcome following DIAM implantation for symptomatic lumbar internal disk disruption: a 3-year retrospective analysis. J Pain Res. 2016;9:917-924. https://doi.org/10.2147/JPR.S115847.
  104. Krappel F., Brayda-Bruno M., Alessi G. et al. Herniectomy versus herniectomy with the DIAM spinal stabilization system in patients with sciatica and concomitant low back pain: results of a prospective randomized controlled multicenter trial. Eur Spine J. 2017;26(3):865-876. https://doi.org/10.1007/s00586-016-4796-6.
  105. Lu K., Liliang P.C., Wang H.K. et al. Reduction in adjacent-segment degeneration after multilevel posterior lumbar interbody fusion with proximal DIAM implantation. J Neurosurg Spine. 2015;23(2):190-196. https://doi.org/10.3171/2014.12.SPINE14666.
  106. Park S.C., Yoon S.H., Hong Y.P. et al. Minimum 2-year follow-up result of degenerative spinal stenosis treated with Interspinous U (coflex). J Korean Neurosurg Soc. 2009;46(4):292-299. https://doi.org/10.3340/jkns.2009.46.4.292.
  107. Errico T.J., Kamerlink J.R., Quirno M. et al. Survivorship of coflex Interlaminar-Interspinous Implant. SAS J. 2009;3(2):59-67. https://doi.org/10.1016/SASJ-2008-0027-RR.
  108. Bae H.W., Lauryssen C., Maislin G. et al. Therapeutic sustainability and durability of coflexinterlaminar stabilization after decompression for lumbar spinal stenosis: a four year assessment. Int J Spine Surg. 2015;9:15. https://doi.org/10.14444/2015.
  109. Kumar N., Shah S.M., Ng Y.H. et al. Role of coflex as an adjunct to decompression for symptomatic lumbar spinal stenosis. Asian Spine J. 2014;8(2):161. https://doi.org/10.4184/asj.2014.8.2.161.
  110. Kim Y.J., Lee S.G., Park C.W. et al. Long-term follow-up (minimum 5 years) study of single-level posterior dynamic stabilization in lumbar degenerative disease; «Interspinous U» & «DIAM». Korean J Spine. 2012;9(2):102-107. https://doi.org/10.14245/kjs.2012.9.2.102.



Abstract: 142


Article Metrics

Metrics Loading ...



  • There are currently no refbacks.

Copyright (c) 2019 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies