Surgical treatment of multilevel lumbar vertebral canal stenosis using dynamic stabilization. Multicenter study

Full Text

Abstract

Purpose: to compare the results of surgical treatment of patients with multilevel lumbar vertebral canal stenosis. Patients and methods. Prospective randomized multicenter study included 71 patients aged 41 - 79 years. In the 1st group of patients (n=38) a standard wide decompression of the spinal canal, transpedicular fixation of one clinically and roentgenologically significant spinal motion segment using rigid stabilization and interbody fusion was performed. In the 2nd group (n=33) microdecompression of the spinal canal, transpedicular fixation of one clinically and roentgenologically significant segment using the rods of nitinol transpedicular device. The results were assessed by the pain VAS, ODI and SF-36 questionnaires, roentgenologic, CT and MRI data. Results. Mean follow up made up 1.5 years, the maximum one - 3.0 years. Significant pain relief and im- provement in the quality of life as compared with the preoperative level was reported for both groups. No sig- nificant difference between the groups was observed. Functional roentgenograms showed within 5° (4.2 - 6.5°) preservation of motion in the stabilized segment only in patients from the 2nd group. Adjacent segment pathology in 12 months after operation was diagnosed only in 1 patient from the 1st group. Conclusion. Preliminary results allow considering the dynamic transpedicular fixation using nitinol rods as an effective surgical technique for the treatment of degenerative lumbar spine pathology.

Full Text

Restricted Access

About the authors

A. O Gushcha

Scientific Center of Neurology

Moscow, Russia

S. V Kolesov

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Moscow, Russia

Ekaterina N. Poltorako

Scientific Center of Neurology

Email: dr.poltorako@mail.ru
neurosurgeon, department of neurosurgery, Scientific Center of Neurology Moscow, Russia

D. A Kolbovskiy

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Moscow, Russia

A. I Kaz’min

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Moscow, Russia

References

  1. Wang M.Y., Green B.A., Shan S. et al. Complications associated with lumbar stenosis surgery in patients older than 75 years of age. Neurosurg. Focus. 2003; 14 (2): e7.
  2. Lee S.Y., Kim T-H., Oh J.K. et al. Lumbar stenosis: a recent update by review of literature. Asian Spine J. 2015; 9 (5): 818-28. doi: 10.4184/asj.2015.9.5.818.
  3. Kovacs F.M., Urrútia G., Alarcón J.D. Surgery versus conservative treatment for symptomatic lumbar spinal stenosis: a systematic review of randomized controlled trials. Spine (Phila Pa 1976). 2011; 36 (20): E1335-E1351. doi: 10.1097/BRS.0b013e31820c97b1.
  4. Assaker R. Minimal invasive laminotomy for lumbar stenosis. Eur. Spine J. 2015; 24 (Suppl 5): 656-7. doi : 10.1007/ s00586-015-4006-y.
  5. Aleem I.S., Rampersaud Y.R. Elderly patients have similar outcomes compared to younger patients after minimally invasive surgery for spinal stenosis. Clin. Orthop. Relat. Res. 2014; 472: 1824-30. doi: 10.1007/s11999-013-3411-y.
  6. Lee M.J., Bransford R.J., Bellabarda C. et al. The effect of bilateral laminotomy versus laminectomy on the motion and stiffness of the human lumbar spine: a biomechanical comparison. Spine (Phila Pa 1976). 2010; 35 (19); 1789-93. doi: 10.1097/BRS.0b013e3181c9b8d6.
  7. Alimi M., Hofstetter C.P., Pyo S.Y. et al. Minimally invasive laminectomy for lumbar spinal stenosis in patients with and without preoperative spondylolisthesis: clinical outcome and reoperation rates. J. Neurosurg. Spine. 2015; 22 (4): 339-52. doi: 10.3171/2014.11.SPINE13597.
  8. Weinstein J.N., Lurie J.D., Olson P.R. et al. United States’trends and regional variations in lumbar spine surgery: 1992-2003. Spine (Phila Pa 1976). 2006; 31 (23): 270-14. doi: 10.1097/01.brs.0000248132.15231.fe
  9. Bae H.W., Rajaee S.S., Kanim L.E. Nationwide trends in the surgical management of lumbar spinal stenosis. Spine (Phila Pa 1976). 2013; 38 (11): 916-26. doi: 10.1097/BRS.0b013e3182833e7c.
  10. Galarza M., Fabrizi A., Maina R. et al. Degenerative lumbar spinal stenosis with neurogenic intermittent claudication and treatment with the Aperius PercLID System: a preliminary report. Neurosurg. Focus. 2010; 28 (6): E3. doi: 10.3171/2010.3.FOCUS1034.
  11. Афаунов А.А., Кузьменко А.В., Васильченко П.П., Тахмазян К.К. Моносегментарный транспедикулярный остеосинтез при лечении повреждений и заболеваний грудного и поясничного отделов позвоночника. В кн.: Материалы Всероссийской науч.-практ. конференции «Илизаровские чтения». Курган; 2010:36-7.
  12. Валеев И.Е. Классификация осложнений транспедикулярных операций позвоночника. Травматология и ортопедия России. 2006; 2 (40): 58.
  13. Park D.K., An H.S., Lurie J.D. et al. Does multilevel lumbar stenosis lead to poorer outcomes?: a subanalysis of the Spine Patient Outcomes Research Trial (SPORT) lumbar stenosis study. Spine (Phila Pa 1976). 2010; 35 (4): 439-46. doi: 10.1097/BRS.0b013e3181bdafb9.
  14. Spivak J.M. Current concepts review - degenerative lumbar spinal stenosis. J. Bone Joint Surg. Am. 1998; 80 (7): 1053-66.
  15. Lee C.K., Rauschning W., Glenn W. Lateral lumbar spinal canal stenosis: classification, pathologic anatomy and surgical decompression. Spine (Phila Pa 1976). 1988; 13 (3): 313-20.
  16. Katz J.N., Lipson S.J., Chang L.C. et al. Seven- to 10-year outcome of decompressive surgery for degenerative lumbarspinal stenosis. Spine (Phila Pa 1976). 1996; 21 (1): 92-8.
  17. Каримов А.А., Басков А.В., Древаль О.Н. и др. Поздние воспалительные осложнения после инструментальной стабилизации при травматических повреждениях позвоночника. В кн.: Материалы V съезда нейрохирургов России, 22-25 июня 2009 г. Уфа: Здравоохранение Башкортостана; 2009: 120.
  18. Sénégas J., Vital J.M., Pointillart V. et al. Long-term actuarial survivorship analysis of an interspinous stabilization system. Eur. Spine J. 2007; 16: 1279-87.
  19. Smorgick Y., Park D.K., Baker K.D. et al. Single versus multilevel fusion, for single level degenerative spondylolisthesis and multilevel lumbar stenosis. four-year results of the spine patient outcomes research trial. Spine (Phila Pa 1976). 2013; 38 (10): 797-805. doi: 10.1097/BRS.0b013e31827db30f.
  20. Min S.H., Yoo J.S. The clinical and radiological outcomes of multilevel minimally invasive transforaminal lumbar interbody fusion. Eur. Spine J. 2013; 22 (5): 1164-72. doi: 10.1007/s00586-012-2619-y.
  21. Wu H., Yu W.D., Jiangi R., Gao Z.L. Treatment of multilevel degenerative lumbar spinal stenosis with spondylolisthesis using a combination of microendoscopic discectomy and minimally invasive transforaminal lumbar interbody fusion. Exp. Ther. Med. 2013; 5 (2): 567-71. doi: 10.3892/etm.2012.812.
  22. Бердюгин К.А., Каренин М.С. Осложнения транспедикулярной фиксации позвоночника и их профилактика. Фундаментальные исследования. 2010; 9: 61-71.
  23. Бердюгин К.А., Чертков А.К., Штадлер Д.И. Ошибки и осложнения транспедикулярной фиксации позвоночника погружными конструкциями. Фундаментальные исследования. 2012; 4 (часть 2): 425-31.
  24. Давыдов Е.А., Мушкин А.Ю., Зуев И.В. и др. Применение биологически и механически совместимых имплантов из нитинола для хирургического лечения повреждений и заболеваний позвоночника и спинного мозга. Гений ортопедии. 2010; 1: 5-11.
  25. Abumi K., Panjabi M.M., Kramer K.M. et al. Biomechanical evaluation of lumbar spine stability after graded facetectomies. Spine (Phila Pa 1976). 1990; 15 (11): 1142-7.
  26. Aota Y., Kumano K., Hirabayashi S. Postfusion instability at the adjacent segments after rigid pedicle screw fixa- tion for degenerative lumbar spinal disorders. J. Spinal Disord. 1995; 8 (6): 464-73.
  27. Sengupta D.K., Herkowitz H.N. Pedicle screw-based posterior dynamic stabilization: literature review. Adv. Orthop. 2012; 2012: 424268. doi: 10.1155/2012/424268.
  28. Sengupta D.K. Dynamic stabilization devices in the treatment of low back pain. Orthop. Clin. North Am. 2004; 35 (1): 43-56. doi: 10.1016/S0030-5898(03)00087-7.
  29. Mulholland R.C., Sengupta D.K. Rationale, principles and experimental evaluation of the concept of soft stabilization. Eur. Spine J. 2002; 11 (Suppl. 2): S198-S205. doi: 10.1007/s00586-002-0422-x.
  30. Schulte T.L., Hurschler C., Haversath M. et al. The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur. Spine J. 2008; 17 (8): 1057-65. doi: 10.1007/s00586-008-0667-0.
  31. Perrin G. Usefulness of intervertebral titanium cages for PLIF and posterior fixation with semi-rigid Isolock plates. In: Szpalski M., Gunsburg R., Spengler D.M., Nachemson A., eds. Instrumented fusion of the degenerative lumbar spine: state of the art, questions and contro- versies. Philadelphia, Pennsylvania: Lippincott-Raven Publishers; 1996: 271-9.
  32. Goel V.K., Lim T.H., Gwon J. et al. Effects of rigidity of an internal fixation device. A comprehensive biomechanical investigation. Spine (Phila Pa 1976). 1991; 16 (3 Suppl): S155-161.
  33. Goel V.K., Konz R.J., Chang H.T. et al. Hinged-dynamic posterior device permits greater loads on the graft and similar stability as compared with its equivalent rigid device: a three-dimensional finite element assessment. J. Prosthet. Orthotics. 2001; 13: 17-20.
  34. Templier A., Denninger L., Mazel C. et al. Comparison between two different concepts of lumbar posterior osteosynthesis implants. A finite element analysis. Eur. J. Orthop. Surg. Traumatol. 1998; 8: 27-36.
  35. Frost H.M. A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod. 2004, 74 (1): 3-15. doi: 10.1043/0003-3219(2004)074<0003:AUOBPA>2.0.CO;2.
  36. Kim Y.S., Zhang H.Y., Moon B.J. et al. Nitinol spring rod dynamic stabilization system and Nitinol memory loops in surgical treatment for lumbar disc disorders: short- term follow up. Neurosurg. Focus. 2007; 22 (1): E10.
  37. Kok D., Firkins P.J., Wapstra F.H. et al. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation. BMC Musculoskelet. Disord. 2013; 14: 269. doi: 10.1186/1471-2474-14-269.

Statistics

Views

Abstract: 133

Dimensions

Article Metrics

Metrics Loading ...

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2017 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies