Influence of Implant Acetabular Component Orientation on Hip Stability


Introduction. Acetabular component malposition at total hip arthroplasty is a common situation that may affect the frequency of dislocation and the rate of implant friction unit wear. The purpose of the study was to determine the influence of different factors on the variability of acetabular component orientation and evaluate the role of orientation in dislocation development. Patients and methods. Total number of patients made up 1408. Out of them 695 patients were operated on at RSRITO named after R.R. Vreden using standard approaches (group 1), 184 - using low invasive approach (group 2) and 55 patients were admitted with implant head dislocation (group 4). At City St. Petersburg hospitals 474 patients (group 3) were operated on. Orientation of acetabular component (inclination and anteversion angles) was evaluated on digital pelvis and plain hip roentgenograms. Dispersion unifactorial analysis was used to evaluate the dependence of the precision of acetabular component positioning upon the surgeon’s experience, patient’s body mass index, type of surgical approach and the use of guide for acetabular component implantation. Results. Within the first postoperative year the rate of femoral component dislocation in group 1 made up 0.9%. Within the Lewinnek safe zone 76.6% of acetabular components were implanted with the use of a guide and 71.8% without. The rate of dislocation in group 2 made up 71.8% and 63.4% of components were implanted within the safe zone. In group 3 the intra-hospitalization dislocation developed in 1.9% of patients and satisfactory positioning relative to Lewinnek safe zone was achieved in 68.2% of cases. The risk factors for acetabular component malposition included high body mass indices, use of low invasive approach and insufficient experience of the operating surgeon. No direct influence of acetabular component orientation upon the femoral component dislocation was detected. Conclusion. Further studies directed to the more detailed analysis of additional factors that either directly or indirectly affect the implant function and to the optimization of surgical technique that would enable the reproducibility of total hip arthroplasty results are required.

Full Text

Restricted Access

About the authors

I. I Shubnyakov

Russian Scientific Research Institute of Traumatology and Orthopedics named after R.R. Vreden

St. Petersburg, Russia

A. A Boyarov

Russian Scientific Research Institute of Traumatology and Orthopedics named after R.R. Vreden

St. Petersburg, Russia
junior research worker, RSRI of TO n. a. R.R. Vreden

R. M Tikhilov

Russian Scientific Research Institute of Traumatology and Orthopedics named after R.R. Vreden

St. Petersburg, Russia

A. O Denisov

Russian Scientific Research Institute of Traumatology and Orthopedics named after R.R. Vreden

St. Petersburg, Russia

N. N Efimov

Russian Scientific Research Institute of Traumatology and Orthopedics named after R.R. Vreden

St. Petersburg, Russia


  1. Хоминец В.В., Метленко П.А., Богданов А.Н. и др. Ближайшие результаты лечения больных с перипротезными переломами бедренной кости после эндопротезирования тазобедренного сустава. Травматология и ортопедия России. 2015; 4: 70-8. doi: 10.21823/2311- 2905-2015-0-4-70-78.
  2. Шильников В.А., Байбородов А.Б., Денисов А.О., Ефимов Н.Н. Двойная мобильность ацетабулярного компонента как способ профилактики вывиха головки эндопротеза тазобедренного сустава. Травматология и ортопедия России. 2016; 22 (4): 107-13. doi: 10.21823/2311-2905-2016-22-4-107-113.
  3. Greene M.E., Rolfson O., Gordon M. et al. Is the use of antidepressants associated with patient-reported outcomes following total hip replacement surgery? Acta Orthop. 2016; 87 (5): 444-51. doi: 10.1080/17453674.2016.1216181.
  4. Judge A., Cooper C., Williams S. et al. Patient-reported outcomes one year after primary hip replacement in a European Collaborative Cohort. Arthritis Care Res. (Hoboken). 2010; 62 (4): 480-8. doi: 10.1002/acr.20038.
  5. Palazzo C., Jourdan C., Descamps S. et al. Determinants of satisfaction 1 year after total hip arthroplasty: the role of expectations fulfilment. BMC Musculoskelet. Disord. 2014; 15: 53. doi: 10.1186/1471-2474-15-53.
  6. Тихилов Р.М., Шубняков И.И., Коваленко А.Н. и др. Данные регистра эндопротезирования тазобедренного сустава РНИИТО им. Р.Р. Вредена за 2007-2012 годы. Травматология и ортопедия России. 2013; 3: 167-90. doi: 10.21823/2311-2905-2013--3-167-190.
  7. Australian Orthopaedic Association National Joint Replacement Registry. Annual Report 2016. Avaliable at Hip%2C%20Knee%20%26%20Shoulder%20Arthroplasty. Accessed 10 March 2017.
  8. Glassou E.N., Hansen T.B., M_kel_ K. et al. Association between hospital procedure volume and risk of revision after total hip arthroplasty: a population-based study within the Nordic Arthroplasty Register Association database. Osteoarthritis Cartilage. 2016; 24 (3): 419-26. doi: 10.1016/j.joca.2015.09.014.
  9. The New Zealand Joint Registry. Seventeen Year Report January 1999 to December 2015. Avaliable at http:// Report.pdf. Accessed 10 March 2017.
  10. Swedish Hip Arthroplasty Register, Annual Report 2014. Avaliable at Accessed 10 March 2017.
  11. Тихилов Р.М., Шубняков И.И., Коваленко А.Н. и др. Структура ранних ревизий эндопротезирования тазобедренного сустава. Травматология и ортопедия России. 2014; (2): 5-13. doi: 10.21823/2311-2905-2014-0- 2-5-13.
  12. Falez F., Papalia M., Favetti F. et al. Total hip arthroplasty instability in Italy. Int. Orthop. 2017; 41 (3): 635-44. doi: 10.1007/s00264-016-3345-6.
  13. Sadr Azodi O., Adami J., Lindstrцm D. et al. High body mass index is associated with increased risk of implant dislocation following primary total hip replacement: 2,106 patients followed for up to 8 years. Acta Orthop. 2008; 79 (1): 141-7. doi: 10.1080/17453670710014897.
  14. Захарян Н.Г. Вывихи после тотального эндопротезирования тазобедренного сустава: Автореф. дис. … канд. мед. наук. М.; 2008.
  15. Biedermann R., Tonin A., Krismer M. et al. Reducing the risk of dislocation after total hip arthroplasty: the effect of orientation of the acetabular component. J. Bone Joint Surg. Br. 2005; 87 (6): 762-9. doi: 10.1302/0301-620x.87b6.14745.
  16. Bosker B.H., Verheyen C.C., Horstmann W.G., Tulp N.J. Poor accuracy of freehand cup positioning during total hip arthroplasty. Arch Orthop. Trauma Surg. 2007; 127 (5): 375-9. doi: 10.1007/s00402-007-0294-y.
  17. Lewinnek G.E., Lewis J.L., Tarr R. et al. Dislocations after total hip-replacement arthroplasties. J. Bone Joint Surg. Am. 1978; 60 (2): 217-20.
  18. Sanchez-Sotelo J., Berry D.J. Epidemiology of instability after total hip replacement. Orthop. Clin. North. Am. 2001; 32 (4): 543-52.
  19. Callanan M.C., Jarrett B., Bragdon C.R. et al. The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin. Orthop. Relat. Res. 2011; 469 (2): 319-29. doi: 10.1007/s11999-010-1487-1.
  20. Widmer K.H., Zurfluh B. Compliant positioning of total hip components for optimal range of motion. J. Orthop. Res. 2004; 22 (4): 815-21. doi: 10.1016/j.orthres.2003.11.001.
  21. Little N.J., Busch C.A., Gallagher J.A. et al. Acetabular polyethylene wear and acetabular inclination and femoral offset. Clin. Orthop. Relat. Res. 2009; 467 (11): 2895- 900. doi: 10.1007/s11999-009-0845-3.
  22. Павлов В.В., Прохоренко В.М. Вывихи бедренного компонента эндопротеза тазобедренного сустава: определение пространственного взаиморасположения компонентов. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2016; 3: 5-10.
  23. Турков П.С., Прохоренко В.М., Павлов В.В. Компьютерная навигация при первичном и ревизионном эндопротезировании тазобедренного сустава. Современное искусство медицины. 2013; 10-11 (2-3): 40-3.
  24. Renkawitz T., W_rner M., Sendtner E. et al. [Principles and new concepts in computer-navigated total hip arthroplasty]. Orthop_de. 2011; 40 (12): 1095-102 (in German). doi: 10.1007/s00132-011-1845-z.
  25. Callanan M., Malchau H. et al. An analysis of cup positioning in THA: Quality improvements by use of a local joint registry. 2010 AAOS / ORS New Orleans 2011 CORR Feb. 2011.
  26. Pedersen D.R., Callaghan J.J., Brown T.D. Activity- dependence of the ‘‘safe zone’’ for impingement versus dislocation avoidance. Med. Eng. Phys. 2005; 27 (4): 323-8. doi: 10.1016/j.medengphy.2004.09.004.
  27. Sculco P.K., Cottino U., Abdel M.P., Sierra R.J. Avoiding hip instability and limb length discrepancy after total hip arthroplasty. Orthop. Clin. North Am. 2016; 47 (2): 327-34. doi: 10.1016/j.ocl.2015.09.006.
  28. Hayashi S., Nishiyama T., Fujishiro T. et al. Evaluation of the accuracy of femoral component orientation by the CT-based fluoro-matched navigation system. Int. Orthop. 2013; 37 (6): 1063-8. doi: 10.1007/s00264-013- 1852-2.
  29. Dorr L.D., Wan Z., Malik A. et al. A comparison of surgeon estimation and computed tomographic measurement of femoral component anteversion in cementless total hip arthroplasty. J. Bone Joint Surg. Am. 2009; 91 (11): 2598-604. doi: 10.2106/JBJS.H.01225.
  30. Zagra L., Caboni E. Total hip arthroplasty instability treatment without dual mobility cups: brief overview and experience of other options. Int. Orthop. 2017; 41 (3): 661-8. doi: 10.1007/s00264-016-3383-0.



Abstract - 27


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2017 Shubnyakov I.I., Boyarov A.A., Tikhilov R.M., Denisov A.O., Efimov N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies