Postarthroscopic osteonecrosis of femoral and tibial condyles

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Osteonecrosis of femoral and tibial condyles is a serious disease resulting in severe forms of arthrosis/arthritis and requiring arthroplasty. Postarthroscopic osteonecrosis is rather rare complication after arthroscopic intervention on the knee joint usually due to meniscus rupture. The surgeons and patients are often not prepared for this complication development. The review covers the common cases of femoral and tibial condyles osteonecrosis after arthroscopic intervention. Potential risk factors are identified; the peculiarities of diagnosis and treatment tactics are described.

Full Text

Restricted Access

About the authors

A. N Torgashin

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Moscow, Russia

S. S Rodionova

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Moscow, Russia

References

  1. Mont M.A., Baumgarten K.M., Rifai A. et al. Atraumatic osteonecrosis of the knee. J. Bone Joint Surg. Am. 2000; 82 (9): 1279-90.
  2. Ahlbäck S., Bauer G.C., Bohne W.H. Spontaneous osteonecrosis of the knee. Arthritis Rheum. 1968; 11 (6): 705-33.
  3. d’Angelijan G., Ryckewaert A., Glimet S. Osteonecrese du plateau tibial interna. Extr. Rheumat. 1976;8:253-5.
  4. Pape D., Seil R., Fritsch E., Rupp S., Kohn D. Prevalence of spontaneous osteonecrosis of the medial femoral condyle in elderly patients. Knee Surg. Sports Traumatol. Arthrosc. 2002; 10 (4): 233-40. https://doi.org/10.1007/s00167-002-0285-z.
  5. Lansdown D.A., Shaw J., Allen C.R., Ma C.B. Osteonecrosis of the knee after anterior cruciate ligament reconstruction: a report of 5 cases. Orthop. J. Sports Med. 2015; 3 (3): 2325967115576120. https://doi.org/10.1177/2325967115576120.
  6. Shenoy P.M., Shetty G.M., Kim D.H. et al. Osteonecrosis of the lateral femoral condyle following anterior cruciate ligament reconstruction: is bone bruising a risk factor? Arch. Orthop. Trauma Surg. 2010; 130 (3): 413-6. https://doi.org/10.1007/s00402-009-0946-1.
  7. Brahme S.K., Fox J.M., Ferkel R.D. et al. Osteonecrosis of the knee after arthroscopic surgery: diagnosis with MR imaging. Radiology. 1991; 178 (3): 851-3. https://doi.org/10.1148/radiology.178.3.1994431.
  8. Johnson T.C., Evans J.A., Gilley J.A., DeLee J.C. Osteonecrosis of the knee after arthroscopic surgery for meniscal tears and chondral lesions. Arthroscopy. 2000; 16 (3): 254-61.
  9. Faletti C., Robba T., de Petro P. Postmeniscectomy osteonecrosis. Arthroscopy. 2002; 18 (1): 91-4.
  10. Kobayashi Y., Kimura M., Higuchi H. et al. Juxta-articular bone marrow signal changes on magnetic resonance imaging following arthroscopic meniscectomy. Arthroscopy. 2002; 18 (3): 238-45.
  11. Pape D., Seil R., Anagnostakos K., Kohn D. Postarthroscopic osteonecrosis of the knee. Arthroscopy. 2007; 23 (4): 428-38.
  12. Santori N., Condello V., Adriani E., Mariani P.P. Osteonecrosis after arthroscopic medial meniscectomy. Arthroscopy. 1995; 11 (2): 220-4.
  13. Pruès-Latour V., Bonvin J.C., Fritschy D. Nine cases of osteonecrosis in elderly patients following arthroscopic meniscectomy. Knee Surg. Sports Traumatol. Arthrosc. 1998; 6 (3): 142-7.
  14. Carpintero P., Leon F., Zafra M. et al. Spontaneous collapse of the tibial plateau: radiological staging. Skeletal Radiol. 2005;34:399-404.
  15. Marx A., Beier A., Taheri P. et al. Post-arthroscopic osteonecrosis of the medial tibial plateau: a case series J. Med. Case Rep. 2016; 10 (1): 291. https://doi.org/10.1186/s13256-016-1063-8.
  16. Strauss E.J., Kang R., Bush-Joseph C., Bach B.R. Jr. The diagnosis and management of spontaneous and post-arthroscopy osteonecrosis of the knee. Bull NYU Hosp. Jt Dis. 2011; 69 (4): 320-30.
  17. Yao L., Stanczak J., Boutin R.D. Presumptive subarticular stress reactions of the knee: MRI detection and association with meniscal tear patterns. Skeletal Radiol. 2004; 33 (5): 260-4. https://doi.org/10.1007/s00256-004-0751-4.
  18. Fukuda Y., Takai S., Yoshino N. et al. Impact load transmission of the knee joint-influence of leg alignment and the role of meniscus and articular cartilage. Clin. Biomech. (Bristol, Avon). 2000; 15 (7): 516-21.
  19. MacDessi S.J., Brophy R.H., Bullough P.G. et al. Subchondral fracture following arthroscopic knee surgery. A series of eight cases. J. Bone Joint Surg. Am. 2008; 90 (5): 1007-12. https://doi.org/10.2106/JBJS.G.00445.
  20. Holland J.C., Brennan O., Kennedy O.D. et al. Subchondral osteopenia and accelerated bone remodelling post-ovariectomy - a possible mechanism for subchondral microfractures in the aetiology of spontaneous osteonecrosis of the knee? J. Anat. 2013; 222 (2): 231-8. https://doi.org/10.1111/joa.12007.
  21. Higuchi H., Kobayashi Y., Kobayashi A. et al. Histologic analysis of postmeniscectomy osteonecrosis. Am. J. Orthop. (Belle Mead NJ). 2013; 42 (5): 220-2.
  22. Muscolo D.L., Costa-Paz M., Ayerza M., Makino A. Medial meniscal tears and spontaneous osteonecrosis of the knee. Arthroscopy. 2006; 22 (4): 457-60. https://doi.org/10.1016/j.arthro.2006.01.009.
  23. Robertson D.D., Armfield D.R., Towers J.D. et al. Meniscal root injury and spontaneous osteonecrosis of the knee: an observation. J. Bone Joint Surg. Br. 2009; 91 (2): 190-5. https://doi.org/10.1302/0301-620X.91B2.21097.
  24. Bonutti P.M., Seyler T.M., Delanois R.E. et al. Osteonecrosis of the knee after laser or radiofrequency-assisted arthroscopy: treatment with minimally invasive knee arthroplasty. J. Bone Joint Surg. Am. 2006; 88 (3): 69-75. https://doi.org/10.2106/JBJS.F.00533.
  25. Cetik O., Cift H., Comert B., Cirpar M. Risk of osteonecrosis of the femoral condyle after arthroscopic chondroplasty using radiofrequency: a prospective clinical series. Knee Surg. Sports Traumatol. Arthrosc. 2009; 17 (1): 24-9.
  26. Balcarek P., Kuhn A., Weigel A. et al. Impact of monopolar radiofrequency energy on subchondral bone viability. Knee Surg. Sports Traumatol. Arthrosc. 2010; 18 (5): 673-80. https://doi.org/10.1007/s00167-009-0949-z.
  27. Kosy J.D., Schranz P.J., Toms A.D. et al. The use of radiofrequency energy for arthroscopic chondroplasty in the knee. Arthroscopy. 2011; 27 (5): 695-703. https://doi.org/10.1016/j.arthro.2010.11.058.
  28. Amiel D., Ball S.T., Tasto J.P. Chondrocyte viability and metabolic activity after treatment of bovine articular cartilage with bipolar radiofrequency: an in vitro study. Arthroscopy. 2004; 20 (5): 503-10. https://doi.org/10.1016/j.arthro.2004.03.018.
  29. Türker M., Çetik Ö., Çırpar M. et al. Postarthroscopy osteonecrosis of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2015; 23 (1): 246-50. https://doi.org/10.1007/s00167-013-2450-y.
  30. Barber F.A., Iwasko N.G. Treatment of grade III femoral chondral lesions: mechanical chondroplasty versus monopolar radiofrequency probe. Arthroscopy. 2006; 22 (12): 1312-7. https://doi.org/10.1016/j.arthro.2006.06.008.
  31. Shellock F.G. Radiofrequency energy induced heating of bovine articular cartilage: comparison between temperature-controlled, monopolar, and bipolar systems. Knee Surg. Sports Traumatol. Arthrosc. 2001; 9 (6): 392-7. https://doi.org/10.1007/s001670100226.
  32. Turner A.S., Tippett J.W., Powers B.E. et al. Radiofrequency (electrosurgical) ablation of articular cartilage: a study in sheep. Arthroscopy. 1998; 14 (6): 585-91.
  33. Lu Y., Edwards R.B. III, Nho S., Cole B.J., Markel M.D. Lavage solution temperature influences depth of chondrocyte death and surface contouring during thermal chondroplasty with temperature-controlled monopolar radiofrequency energy. Am. J. Sports Med. 2002; 30 (5): 667-73.
  34. Kaplan L.D, Ernsthausen J.M., Bradley J.P. et al. The thermal field of radiofrequency probes at chondroplasty settings. Arthroscopy. 2003; 19 (6): 632-40.
  35. Kaplan L., Uribe J.W. The acute effects of radiofrequency energy in articular cartilage: an in vitro study. Arthroscopy. 2000; 16 (1): 2-5.
  36. Lu Y., Edwards R.B. III, Cole B.J., Markel M.D. Thermal chondroplasty with radiofrequency energy. An in vitro comparison of bipolar and monopolar radiofrequency devices. Am. J. Sports Med. 2001; 29 (1): 42-9.
  37. Mont M.A., Marker D.R., Zywiel M.G., Carrino J.A. Osteonecrosis of the knee and related conditions. J. Am. Acad. Orthop. Surg. 2011; 19 (8): 482-94.
  38. Juréus J., Lindstrand A., Geijer M. et al. The natural course of spontaneous osteonecrosis of the knee (SPONK): a 1- to 27-year follow-up of 40 patients. Acta Orthop. 2013; 84 (4): 410-4. https://doi.org/10.3109/17453674.2013.810521.
  39. Lecouvet F.E., van de Berg B.C., Maldague B.E. et al. Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. AJR Am. J. Roentgenol. 1998; 170 (1): 71-7. https://doi.org/10.2214/ajr.170.1.9423603
  40. Lotke P.A., Abend J.A., Ecker M.L. The treatment of osteonecrosis of the medial femoral condyle. Clin. Orthop. Relat. Res. 1982;(171):109-16.
  41. Торгашин А.Н., Родионова С.С. Асептический некроз наружного мыщелка бедренной кости: роль остеотропной терапии и ортопедического режима. Клинический случай. Opinion Leader. 2018;1:82-6
  42. Солод Э.И., Родионова С.С., Торгашин А.Н. Комплексный подход к терапии пациентов с нарушением метаболизма костной ткани в травматологии и ортопедии. Эффективная фармакотерапия (ревматология, травматология и ортопедия). 2017;1:50-6
  43. Jureus J., Lindstrand A., Geijer M. et al. Treatment of spontaneous osteonecrosis of the knee (SPONK) by a bisphosphonate: a prospective case series with 17 patients. Acta Orthop. 2012; 83 (5): 511-4. https://doi.org/10.3109/17453674.2012.729184.
  44. Kraenzlin M.E., Graf C., Meier C. et al. Possible beneficial effect of bisphosphonates in osteonecrosis of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2010; 18 (12): 1638-44. https://doi.org/10.1007/s00167-010-1106-4.
  45. Nishii T., Sugano N., Miki H. et al. Does alendronate prevent collapse in osteonecrosis of the femoral head? Clin. Orthop. Relat. Res. 2006;443:273-9. https://doi.org/10.1097/01.blo.0000194078.32776.31.
  46. Reid I.R., Brown J.P., Burkhardt P. et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N. Engl. J. Med. 2002; 346 (9): 653-61. https://doi.org/10.1056/NEJMoa011807.
  47. Marcheggiani Muccioli G.M., Grassi A., Setti S. et al. Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: pulsed electromagnetic fields therapy. Eur. J. Radiol. 2013; 82 (3): 530-7. https://doi.org/10.1016/j.ejrad.2012.11.011.
  48. Barroso G.C., Fuchs T., Thiele E., Lima M.N. Spontaneous osteonecrosis in an athlete’s knee treated using a hyperbaric chamber: case report and review of the literature. Rev. Bras. Ortop. 2015; 47 (3): 389-93. https://doi.org/10.1016/S2255-4971(15)30118-X.
  49. Yates P.J., Calder J.D., Stranks G.J. et al. Early MRI diagnosis and non-surgical management of spontaneous osteonecrosis of the knee. Knee. 2007;14:112-6. https://doi.org/10.1016/j.knee.2006.10.012.
  50. Duany N.G., Zywiel M.G., McGrath M.S. et al. Joint-preserving surgical treatment of spontaneous osteonecrosis of the knee. Arch. Orthop. Trauma Surg. 2010; 130 (1): 11-6. https://doi.org/10.1007/s00402-009-0872-2.
  51. Forst J., Forst R., Heller K.D., Adam G. Spontaneous osteonecrosis of the femoral condyle: causal treatment by early core decompression. Arch. Orthop. Trauma Surg. 1998; 117 (1-2):18-22.
  52. Jacobs M.A., Loeb P.E., Hungerford D.S. Core decompression of the distal femur for avascular necrosis of the knee. J. Bone Joint Surg. Br. 1989; 71 (4): 583-7.
  53. Lee K., Goodman S.B. Cell therapy for secondary osteonecrosis of the femoral condyles using the Cellect DBM System: a preliminary report. J. Arthroplasty. 2009; 24 (1): 43-8. https://doi.org/10.1016/j.arth.2008.01.133.
  54. Rijnen W.H., Luttjeboer J.S., Schreurs B.W., Gardeniers J.W. Bone impaction grafting for corticosteroid-associated osteonecrosis of the knee. J. Bone Joint Surg. Am. 2006; 88 Suppl 3: 62-8. https://doi.org/10.2106/JBJS.F.00462.
  55. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International. Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315-7. https://doi.org/10.1080/14653240600855905.
  56. Marti C.B., Rodriguez M., Zanetti M., Romero J. Spontaneous osteonecrosis of the medial compartment of the knee: a MRI follow-up after conservative and operative treatment, preliminary results. Knee Surg. Sports Traumatol. Arthrosc. 2000; 8 (2): 83-8. https://doi.org/10.1007/s001670050191.
  57. Bugbee W., Cavallo M., Giannini S. Osteochondral allograft transplantation in the knee. J. Knee Surg. 2012; 25 (2): 109-16.
  58. Tanaka Y., Mima H., Yonetani Y. et al. Histological evaluation of spontaneous osteonecrosis of the medial femoral condyle and short-term clinical results of osteochondral autografting: a case series. Knee. 2009; 16 (2): 130-5. https://doi.org/10.1016/j.knee.2008.10.013.
  59. Chambers C., Craig J.G., Zvirbulis R., Nelson F. Spontaneous osteonecrosis of knee after arthroscopy is not necessarily related to the procedure. Am. J. Orthop. 2015; 44 (6): E184-9.

Statistics

Views

Abstract - 25

PDF (Russian) - 3

Cited-By


Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 Torgashin A.N., Rodionova S.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies