Heterotopic ossification after central nervous system injuries: understanding of pathogenesis

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Available data on the pathogenesis, cellular interactions, role of inflammation, humoral and genetic factors in the formation of heterotopic ossifications resulting from injuries of the brain or spinal cord are presented.

Full Text

Restricted Access

About the authors

I. F Gareev

Bashkir State Medical University

Ufa, Russia

O. A Beylerli

Bashkir State Medical University

Ufa, Russia

A. K Vakhitov

Bashkir State Medical University

Ufa, Russia


  1. Ekelund A., Brosjo O., Nilsson O.S. Experimental induction of heterotopic bone. Clin. Orthop. Relat. Res. 1991;(263):102-12.
  2. Cipriano C.A., Pill S.G., Keenan M.A. Heterotopic ossification following traumatic brain injury and spinal cord injury. J. Am. Acad. Orthop. Surg. 2009; 17 (11): 689-97.
  3. Simonsen L.L., Sonne-Holm S., Krasheninnikoff M., Engberg A.W. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors. Injury. 2007; 38 (10): 1146-50. https://doi.org/10.1016/j.injury.2007.03.019.
  4. Genêt F., Jourdan C., Lautridou C. et al. The impact of preoperative hip heterotopic ossification extent on recurrence in patients with head and spinal cord injury: a case control study. PloS One. 2011; 6 (8): e23129. https://doi.org/10.1371/journal.pone.0023129.
  5. Denormandie P., de l’Escalopier N., Gatin L. et al. Resection of neurogenic heterotopic ossification (NHO) of the hip. Orthop. Traumatol. Surg. Res. 2018; 104 (1S): S121-7. https://doi.org/10.1016/j.otsr.2017.04.015.
  6. Chalmers J., Gray D.H., Rush J. Observations on the induction of bone in soft tissues. J. Bone Joint Surg. Br. 1975; 57 (1): 36-45.
  7. Cadosch D., Gautschi O.P., Thyer M. et al. Humoral factors enhance fracture-healing and callus formation in patients with traumatic brain injury. J. Bone Joint Surg. Am. 2009; 91 (2): 282-8. https://doi.org/10.2106/JBJS.G.01613.
  8. Gautschi O.P., Cadosch D., Frey S.P. et al. Serum-mediated osteogenic effect intraumatic brain-injured patients. ANZ J. Surg. 2009; 79 (6): 449-55. https://doi.org/10.1111/j.1445-2197.2008.04803.x.
  9. Wang J.W., Li J.P., Song Y.L. et al. Humoral and Cellular Immunity Changed after Traumatic Brain Injury in Human Patients. Ann. Clin. Lab. Sci. 2017;47(1):10-16.
  10. Mitchell E.J., Canter J., Norris P. et al. The genetics of heterotopic ossification: insight into the bone remodeling pathway. J. Orthop. Trauma. 2010; 24 (9): 530-3. https://doi.org/10.1097/BOT.0b013e3181ed147b.
  11. Ackerman L.V. Extra-osseous localized non-neoplastic bone and cartilage formation (so-called myositis ossificans): clinical and pathological confusion with malignant neoplasms. J. Bone Joint Surg. 1958; 40-A (2): 279-98.
  12. Legosz P., Drela K., Pulik L. et al. Challenges of heterotopic ossification-Molecular background and current treatment strategies. Clin. Exp. Pharmacol. Physiol. 2018; 45 (12): 1229-35. https://doi.org/10.1111/1440-1681.13025.
  13. Gugala Z., Olmsted-Davis E.A., Xiong Y. et al. Trauma-induced heterotopic ossification regulates the blood-nerve barrier. Front. Neurol. 2018; 9: 408. https://doi.org/10.3389/fneur.2018.00408.
  14. Bidner S.M., Rubins I.M., Desjardins J.V. et al. Evidence for a humoral mechanism for enhanced osteogenesis after head injury. J. Bone Joint Surg. Am. 1990; 72 (8): 1144-9.
  15. Kurer M.H., Khoker M.A., Dandona P. Human osteoblast stimulation by sera from paraplegic patients with heterotopic ossification. Paraplegia. 1992; 30 (3): 165-8. https://doi.org/10.1038/sc.1992.58.
  16. Gautschi O.P., Toffoli A.M., Joesbury K.A. et al. Osteoinductive effect of cerebrospinal fluid from brain-injured patients. J. Neurotrauma. 2007;24:154-62. https://doi.org/10.1089/neu.2006.0166.
  17. Vanden Bossche L., Vanderstraeten G. Heterotopic ossification: a review. J. Rehabil. Med. 2005; 37 (3): 129-36. https://doi.org/10.1080/16501970510027628.
  18. Dizdar D., Tiftik T., Kara M. et al. Risk factors for developing heterotopic ossification in patients with traumatic brain injury. Brain Inj. 2013; 27 (7-8): 807-11. https://doi.org/10.3109/02699052.2013.775490.
  19. Sakellariou V.I., Grigoriou E., Mavrogenis A.F. et al. Heterotopic ossification following traumatic brain injury and spinal cord injury: insight into the etiology and pathophysiology. J. Musculoskelet. Neuronal. Interact. 2012; 12 (4): 230-40.
  20. Potter B.K., Forsberg J.A., Davis T.A. et al. Heterotopic ossification following combat-related trauma. J. Bone Joint Surg. Am. 2010; 92 (Suppl. 2): 74-89. https://doi.org/10.2106/JBJS.J.00776.
  21. da Silva Meirelles L., Chagastelles P.C., Nardi N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 2006;119:2204-13. https://doi.org/10.1242/jcs.02932.
  22. Cadosch D., Toffoli A.M., Gautschi O.P. et al. Serum after traumatic brain injury increases proliferation and supports expression of osteoblast markers in muscle cells. J. Bone Joint Surg. Am. 2010; 92 (3): 645-53. https://doi.org/10.2106/JBJS.I.00097.
  23. Mastrogiacomo M., Derubeis A.R., Cancedda R. Bone and cartilage formation by skeletal muscle derived cells. J. Cell Physiol. 2005; 204 (2): 594-603. https://doi.org/10.1002/jcp.20325.
  24. Da Paz A.C., Carod Artal F.J., Kalil R.K. The function of proprioceptors in bone organization: a possible explanation for neurogenic heterotopic ossification in patients with neurological damage. Med. Hypotheses. 2007; 68 (1): 67-73. https://doi.org/10.1016/j.mehy.2006.06.035.
  25. Van Kuijk A.A., Geurts A.C., van Kuppevelt H.J. Neurogenic heterotopic ossification in spinal cord injury. Spinal Cord. 2002; 40 (7): 313-26. https://doi.org/10.1038/sj.sc.3101309.
  26. Mastrogiacomo M., Derubeis A.R., Cancedda R. Bone and cartilage formation by skeletal muscle derived cells. J. Cell Physiol. 2005;204:594-603. https://doi.org/10.1002/jcp.20325.
  27. Falsetti P., Acciai C., Palilla R. Carpinteri F. Bedside ultrasound in early diagnosis of neurogenic heterotopic ossification in patients with acquired brain injury. Clin. Neurol. Neurosurg. 2011; 113 (1): 22-7. https://doi.org/10.1016/j.clineuro.2010.08.012.
  28. D’Amelio P., Fornelli G., Roato I., Isaia G.C. Interactions between the immune system and bone. World J. Orthop. 2011; 2 (3): 25-30. https://doi.org/10.5312/wjo.v2.i3.25.
  29. Crespo A.R., Da Rocha A. B., Jotz G.P., Schneider R.F. Increased serum sFas and TNFalpha following isolated severe head injury in males. Brain Inj. 2007; 21 (4): 441-7. https://doi.org/10.1080/02699050701311125.
  30. Evans K.N., Forsberg J.A., Potter B.K. et al. Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high energy penetrating war injuries. J. Orthop. Trauma. 2012; 26 (11): e204-13. https://doi.org/10.1097/BOT.0b013e31825d60a5.
  31. Convente M.R., Wang H., Pignolo R.J. et al. The immunological contribution to heterotopic ossification disorders. Curr. Osteoporos. Rep. 2015; 13 (2): 116-24. https://doi.org/10.1007/s11914-015-0258-z.
  32. Hayakata T., Shiozaki T., Tasaki O. et al. Changes in Csf S100b and cytokine concentrations in early-phase severe traumatic brain injury. Shock. 2004; 22: 102e7.
  33. Gordeladze J.O., Drevon C.A., Syversen U., Reseland J.E. Leptin stimulates human osteoblastic formation, de novo collagen synthesis, anmineralization: impact on differentiation markers, apoptosis and osteoclastic signaling. J. Cell Biochem. 2002; 85 (4): 825-36. https://doi.org/10.1002/jcb.10156.
  34. Khan S.N., DuRaine G., Virk S.S. et al. The temporal role of leptin within fracture healing and the effect of local application of recombinant leptin on fracture healing. J. Orthop. Trauma. 2013; 27 (11): 656-62. https://doi.org/10.1097/BOT.0b013e3182847968.
  35. Yan H., Zhang H.W., Fu P. et al. Leptin’s effect on accelerated fracture healing after traumatic brain injury. Neurol. Res. 2013; 35 (5): 537-44. https://doi.org/10.1179/1743132813Y.0000000201.
  36. Wang L., Yuan J.S., Zhang H.X. et al. Effect of leptin on bone metabolism in rat model of traumatic brain injury and femoral fracture. Chin. J. Traumatol. 2011; 14 (1): 7-13.https://doi.org/ 10.3760/cma.j.issn.1008-1275.2011.01.002.
  37. Hess R., Pino A.M., Rios S. et al. High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J. Cell Biochem. 2005; 94 (1): 50-7. https://doi.org/10.1002/jcb.20330.
  38. Takeda S., Elefteriou F., Levasseur R. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002; 111 (3): 305-17.
  39. Tanigushi T., Matsumoto T., Shindo H. Changes of serum levels of osteocalcin, alkaline phosphatase, IGF-1 and IGF-binding protein-3 during fracture healing. Injury Int. J. Care. 2003;34:477-9.
  40. Neve A., Corrado A., Cantatore F.P. Osteocalcin: skeletal and extra-skeletal effects. J. Cell Physiol. 2013; 228 (6): 1149-53. https://doi.org/10.1002/jcp.24278.
  41. Trentz O.A., Handschin A.E., Bestmann L. et al. Influence of brain injury on early posttraumatic bone metabolism. Crit. Care Med. 2005; 33 (2): 399-406.
  42. Banse X., Devogelaer J.P., Lafosse A. et al. Cross-link profile of bone collagen correlates with structural organization of trabeculae. Bone. 2002;31:70-6.
  43. Scarfi S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J. Stem Cells. 2016; 8 (1): 1-12. https://doi.org/10.4252/wjsc.v8.i1.1.
  44. Chen D., Zhao M., Mundy G.R. Bone morphogenetic proteins. Growth Factors. 2004; 22 (4): 233-41. https://doi.org/10.1080/08977190412331279890.
  45. Kang Q., Sun M.H., Cheng H. et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004; 11 (17): 1312-20. https://doi.org/10.1038/sj.gt.3302298.
  46. Brinker M.R., Miller M.D. Basic sciences: bone injury andrepair. In: Miller M., ed. Review of Orthopaedics. 3rd ed. Saunders WB; 2000: 19-22.
  47. Oliveira C.O., Ikuta N., Regner A. Outcome biomarkers following severetraumatic brain injury. Rev. Bras. Ter. Intensiva. 2008; 20 (4); 411-21. https://doi.org/10.1590/S0103-507X2008000400015.
  48. Suehiro E., Fujisawa H., Akimura T. et al. Increased matrix metalloproteinase-9 in blood in association with activation of interleukin-6 after traumatic brain injury: influence of hypothermic therapy. J. Neurotrauma. 2004; 21 (12): 1706-11. https://doi.org/10.1089/neu.2004.21.1706.
  49. Issack P.S., Helfet D.L., Lane J.M. Role of Wnt signaling in bone remodeling and repair. HSS J. 2008; 4 (1): 66-70. https://doi.org/10.1007/s11420-007-9072-1.
  50. Day T.F., Guo X., Garrett-Beal L., Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell. 2005;8:739-50.
  51. Regard J.B., Deepti M., Gvozdenovic-Jeremic J. et al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat. Med. 2013; 19 (11): 1505-12. https://doi.org/10.1038/nm.3314.
  52. Regard J.B., Cherman N., Palmer D. et al. Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc. Natl. Acad. Sci. U S A. 2011; 108 (50): 20101-6. https://doi.org/10.1073/pnas.1114656108.
  53. Shehab D., Elgazzar A.H., Collier B.D. Heterotopic ossification. J. Nucl. Med. 2002;43:346-53.
  54. Blackwell K.A., Raisz L.G., Pilbeam C.C. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol. Metab. 2010; 21 (5): 294-301. https://doi.org/10.1016/j.tem.2009.12.004.



Abstract - 28

PDF (Russian) - 0


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2018 Gareev I.F., Beylerli O.A., Vakhitov A.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies