Elaboration of New Treatment Methods for Spinal Cord Injuries Using Magnetic Nanoparticles in Combination with Electromagnetic Field (Experimental Study)


The latest studies on the use of magnetic nanoparticles (MNP) in biological systems prove their high biocompatibility and possibility to interact with various types of cells including the neurons. This may serve as a basis for potential restoration of the neuronal network after nerve tissue integrity damage. The purpose of the study was to determine the influence of MNP on the restoration of hind paws function in experimental animals after spinal cord transection (by 50, 80 and 100%) under the influence of a magnetic field. Magnetic nanoparticles were inserted into the injury zone via plastic catheter. The degree of function loss and its subsequent restoration was assessed by BBB Locomotor Scale and induced potentials on the first postoperative day and then weekly within one month. Statistically significant (p<0.001) increase of both the induced potentials’ amplitude and mean functional indices was reordered only in group with 50% spinal cord transection. Also in that group the less marked scar changes and the highest neuronal cells survival rate was observed. Use of MNP under the influence of external magnetic field promotes the restoration of motor function and increases the conductivity of injured spinal cord tissues in experimental animals in the mean long term period. The mechanism of such restoration needs further study.

Full Text

Restricted Access

About the authors

S. V Kolesov

N.N. Priorov Central Institute of Traumatology and Orthopaedics

Moscow, Russia

A. A Panteleev

N.N. Priorov Central Institute of Traumatology and Orthopaedics

Moscow, Russia

M. L Sazhnev

N.N. Priorov Central Institute of Traumatology and Orthopaedics

Email: mak.sajnev@yandex.ru
Moscow, Russia

A. I Kaz’min

N.N. Priorov Central Institute of Traumatology and Orthopaedics

Moscow, Russia


  1. Thuret S., Moon L.F., Gage F.H. Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci. 2006; 7: 628-43.
  2. Keirstead H., Pataky D., McGraw J., Steeves J. In vivo immunological suppression of spinal cord myelin development. Brain Res. Bull. 1997; 44: 727-34.
  3. Nicholls J., Saunders N. Regeneration of immature mammalian spinal cord after injury. Trends Neurosci. 1996; 19: 229-34.
  4. Galtrey C.M., Fawcett J.W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 2007; 54: 1-18.
  5. Busch S.A., Silver J. The role of extracellular matrix in CNS regeneration. Curr. Opin. Neurobiol. 2007; 17: 120-7.
  6. Plemel J.R., Yong V.W., Stirling D.P. Immune modulatory therapies for spinal cord injury - past, present and future. Exp. Neurol. 2014; 258: 91-104.
  7. Gensel J.C., Donnelly D.J., Popovich P.G. Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opin. Ther. Targets 2011; 15 (4): 505-18.
  8. Tetzlaff W., Okon E.B., Karimi-Abdolrezaee S., Hill C.E., Sparling J.S., Plemel J.R. A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma 2010; 28 (8): 1611-82.
  9. Cadotte D.W., Fehlings M.G. Spinal cord injury: a systematic review of current treatment options. Clin. Orthop. Relat. Res. 2011; 469 (3): 732-41.
  10. Gorrie C.A., Hayward I., Cameron N., Kailainathan G., Nandapalan N., Sutharsan R. Effects of human OEC-derived cell transplants in rodent spinal cord contusion injury. Brain Res. 2010; 1337: 8-20.
  11. Agudo M., Woodhoo A., Webber D., Mirsky R., Jessen K.R., McMahon S.B. Schwann cell precursors transplanted into the injured spinal cord multiply, integrate and are permissive for axon growth. Glia. 2008; 56 (12): 1263-70.
  12. Kim M. Regeneration of completely transected spinal cord using scaffold of poly (D,L-lactide-co-glycolide)/small intestinal submucosa seeded with rat bone marrow stem cells. Tissue Eng. Part A. 2011; 17: 2143-52.
  13. Park S.I., Lim J.Y., Jeong C.H., Kim S.M., Jun J.A., Jeun S.S. Human umbilical cord blood-derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis. J. Biomed. Biotechnol. 2012 (2012). Article ID 362473.
  14. Franz S., Weidner N., Blesch A. Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Exp. Neurol. 2011; 235: 62-9.
  15. Suter D.M., Miller K.E. The emerging role of forces in axonal elongation. Progr. Neurobiol. 2011; 94: 91-101.
  16. Franze K. The mechanical control of nervous system development. Development. 2013; 140: 3069-77.
  17. Smith D.H. Stretch growth of integrated axon tracts: Extremes and exploitations. Prog. Neurobiol. 2009; 89 (3): 231-9.
  18. Heidemann S.R., Bray D. Tension-driven axon assembly: a possible mechanism. Front Cell Neurosci. 2015; 9: 316.
  19. Santo V.E., Rodrigues M.T., Gomes M.E. Contributions and future perspectives on the use of magnetic nanoparticles as diagnostic and therapeutic tools in the field of regenerative medicine. Expert Rev. Mol. Diagn. 2013; 13 (6): 553-66.
  20. Vanecek V., Zablotskii V., Forostyak S., Ruzicka J., Herynek V. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int. J. Nanomedicine. 2012; 7: 3719-30.
  21. Bock N., Riminucci A., Dionigi C., Russo A. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomater. 2010; 6 (3): 786-96.
  22. Huang H., Delikanli S., Zeng H., Ferkey D.M., Pralle A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. nanotechnol. 2010; 5: 602-6.
  23. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 2003; 36: R167-81.
  24. Миронов С.П., Колесов С.В., Степанов Г.А., Сажнев М.Л., Губин С.П., Иони Ю.В., Мотин В.Г., Пантелеев А.А. Моделирование различного по объему повреждения спинного мозга крысы и методы оценки восстановления утраченных функций (часть 1). Вестник травматологии и ортопедии им. Н.Н. Приорова. 2015; 3: 73-7. [Mironov S.P., Kolesov S.V., Stepanov G.A., Sazhnev M.L., Gubin S.P., Ioni Yu.V., Motin V.G., Panteleev A.A. Modeling of a different volume spinal cord injury in rats and methods for evaluation of lost functions restoration (Part 1). Vestnik travmatologii I ortopedii im. N.N. Priorova. 2015; 3: 73-7].
  25. Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995; 12: 1-21.
  26. Nashmi R., Imamura H., Tator C.H., Fehlings M.G. Serial recording of somatosensory and myoelectric motor evoked potentials: Role in assessing functional recovery after graded spinal cord injury in the rat. J. Neurotrauma. 1997; 14: 151-9.
  27. Ito A., Shinkai M., Honda H., Kobayashi T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 2005; 100: 1-11.
  28. Pisanic T.R., Blackwell J.D., Shubayev V.I., Finones R.R., Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials. 2007; 28 (25): 72-81.



Abstract - 26


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2016 Kolesov S.V., Panteleev A.A., Sazhnev M.L., Kaz’min A.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies