Matrix Properties, Biocompatibility and Osteoplastic Potentialities of Composite Materials Based on Polylactoglycolide and Natural Coral Skeleton Granules of Various Dispersity

Abstract

Results of in vitro and in vivo medico5biological study of mineral-polymer composites (MPC) based on high molecular polylactoglycolide and natural A. cervicornis coral skeleton with vari5 ous dispersity (<200 µm, 200-600 µm and >600 µm) as materials for bone defects substitution are presented. On the model of human fibroblasts in vitro it was shown that MPC were not toxic and possessed satisfactory matrix (for cells) properties. The optimum for composite size of natural coral granules made up 200-600 µm. MPC biocompatibility was shown in subcutaneous test in mice. However comparatively slow subcutaneous substitution of both polylactoglycolide and MPC on its basis by connective tissue. Study of MPC and its components’ osteoplastic potential showed that in the zone of fenestral tibia defect in rats polylactoglycolide was substituted by connective tissue. Periosteal osteogenesis that in MPC was supplemented by enchondral osteogenesis was observed around the particles of natural coral skeleton.

Full Text

Исследование матриксных свойств, биосовместимости и остеопластических потенций композиционных материалов на основе полилактогликолида и гранул скелета натуральных кораллов различной дисперсности
×

References

  1. Dorozhkin S.V. Bioceramics of calcium orthophosphates. Biomaterials. 2010; 31: 1465–85.
  2. Gardin C., Ferroni L., Favero L., Stellini E., Stomaci D., Sivolella S., Bressan E., Zavan B. Nanostructured bio- materials for tissue engineered bone tissue reconstruction. Int. J. Mol. Sci. 2012; 13 (1): 737–57.
  3. Venugopal J., Prabhakaran M.P., Zhang Y., Low S., Choon A.T., Ramakrishna S. Biomimetic hydroxyapa- tite-containing composite nanofibrous substrates for bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 2010; 368 (1917): 2065–81.
  4. Barbieri D., Renard A.J., de Bruijn J.D., Yuan H. Hete- rotopic bone formation by nanoapatite containing poly(D,L-lactide) composites. Eur. Cell Mater. 2010; 19: 252–61.
  5. Lam C.X.F., Olkowsky R., Swieszkowski W., Tan K.C., Gibson I., Hutmacher D.W. Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual and Physical Prototyping. 2008; 3 (4): 193–7.
  6. Haaparanta A.M., Haimi S., Elli V., Hopper N., Miettin en S., Suuronen R., Kellomiki M. Porous polylactide/b-tricalcium phosphate composite scaffolds for tissue engineering applications. J. Tissue Eng. Regen. Med. 2010; 4 (5): 366–73.
  7. Demers C., Hamdy C.R., Corsi K., Chellat F., Tabrizian M., Yahia L. Natural coral exoskeleton as a bone graft sub- stitute: A review. Biomed. Mater. Eng. 2002; 12 (1): 15–35.
  8. Wu Y.C., Lee T.M., Chiu K.H., Shaw S.Y., Yang C.Y. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J. Mater. Sci Mater. Med. 2009; 20 (6): 1273–80.
  9. Сергеева Н.С., Свиридова И.К., Баринов С.М., Комлев В.С., Кирсанова В.А., Ахмедова С.А., Фадеева И.В., Молодцова Т.Н., Петракова Н.В., Антохин А.И., Павлова Г.В., Шанский Я.Д. Комплексное изучение природных кораллов для решения проблем реконструкции/инженерии костной ткани. I. Изучение физико-химических и матриксных (для клеток) свойств природных кораллов. Технологии живых систем. 2012; 9 (8): 3–13.
  10. Сергеева Н.С., Свиридова И.К., Баринов С.М., Комлев В.С., Кирсанова В.А., Ахмедова С.А., Фадеева И.В., Молодцова Т.Н., Петракова Н.В., Антохин А.И., Павлова Г.В., Шанский Я.Д. Комплексное изучение природных кораллов для решения проблем реконструкции/инженерии костной ткани. II. Изучение биосовместимости и остеокондуктивных потенций природных кораллов. Технологии живых систем. 2012; 9 (10): 23–30.
  11. Попов В.К., Краснов А.П., Воложин А.И., Хоудл С.М. Новые биоактивные композиты для регенерации костных тканей. Перспективные материалы. 2004; 4: 49–57.
  12. Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983; 65: 55–63.
  13. Чиссов В.И., Свиридова И.К., Сергеева Н.С., Франк Г.А., Кирсанова В.А., Ахмедова С.А., Решетов И.В., Филю шин М.М., Баринов С.М., Фадеева И.В., Комлев В.С. Исследование in vivo биосовместимости и динамики замещения дефекта голени крыс пористыми грану- лированными биокерамическими материалами. Клеточные технологии в биологии и медицине. 2008; 3: 151–6.

Statistics

Views

Abstract: 100

Dimensions

Article Metrics

Metrics Loading ...

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2013 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies