Study of Biocompatibility and Antibacterial Properties of Argentum-Tricalcium Phosphate In Vivo

Abstract


Study of biocompatibility and antibacterial properties of argentum-containing tricalcium phosphate (TCPh) with various degree of substitution by argentum (TCPh-Ag) was performed on rat model. Biocompatibility was studied using subcutaneous implantation of TCPh-Ag (0.5). Antibacterial properties were studied in 5 subgroups (A-E), 5 animals in every group. At first step a distal femur defect was formed and infected by 24-hours cultures of clinical isolates of methicillin-resistant S. aureus. Second step (subgroups B-E) consisted of revision intervention with implantation of either TCPh or TCPh-Ag with various degree of substitution by argentum (0.04, 0.2 and 0.5) into infected defect. Histologic examination of tissue samples with subcutaneous implantation of TCPh-Ag (0.5) showed the absence of inflammatory and rejection reactions that was indicative of study material biocompatibility. Optimim degrees of Ag substitution were 0.2 and 0.5 that provide high antibacterial activity at monotherapy of femur bacterial infection in rats with minimum pronounced toxic effect on the surrounding tissues and bone marrow.

About the authors

V. E Khon

Central Institute of Traumatology and Orthopaedics named after N.N. Priorov, Moscow, Russia

Email: vladimir.khon@mail.ru

N. V Zagorodniy

Central Institute of Traumatology and Orthopaedics named after N.N. Priorov, Moscow, Russia


V. E Mamonov

Hematological Scientific Centre, Moscow, Russia


E. N Glasko

Hematological Scientific Centre, Moscow, Russia


N. V Petrakova

A. Baikov Institute of Metallurgy and Materials Science, Moscow, Russia


A. N Shal’nev

Central Institute of Traumatology and Orthopaedics named after N.N. Priorov, Moscow, Russia


T. Ya Pkhakadze

Central Institute of Traumatology and Orthopaedics named after N.N. Priorov, Moscow, Russia


V. C Komlev

A. Baikov Institute of Metallurgy and Materials Science, Moscow, Russia


References

  1. Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. М.: Наука; 2005: 215.
  2. Баринов С.М. Керамические и композиционные материалы на основе фосфатов кальция для медицины. Успехи химии. 2010; 79: 15-32.
  3. Matsumoto N., Sato K., Yoshida K., Hashimoto K., Toda Y. Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. Acta Biomaterialia. 2009; 5 (8): 3157-64.
  4. Хон В.Э., Загородний Н.В., Жадин А.В., Кузьменков К.А., Цискарашвили А.В. Роль операции Гирдлестоуна в лечении инфекционных осложнений после эндопротезирования тазобедренного сустава. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2013; 3: 25-30.
  5. Zak O., Sande M. Handbook of animal models of infection. London: Academic Press; 1998: 599-604.
  6. Bernthal N.M., Stavrakis A.I., Billi F., Cho J.S., Kremen T.J., Simon S.I. et al. A mouse model of post-arthroplasty staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS ONE; 2010; 5 (9): e12580.
  7. Хон В.Э., Загородний Н.В., Комлев В.С., Фадеева И.В., Булгаков В.Г., Сергеева Н.С. и др. Влияние степени замещения кальция серебра в трикальцийфосфате на его биологические свойства in vitro. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2013; 4: 23-8.
  8. Nelson D.R., Buxton T.B., Luu Q.N., Rissing J.P. The promotional effect of bone wax on experimental Staphylococcus Aureus osteomyelitis. J. Thorac. Cardiovasc. Surg. 1990; 99: 977-80.
  9. Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. М.: Наука; 2005: 215.
  10. Баринов С.М. Керамические и композиционные материалы на основе фосфатов кальция для медицины. Успехи химии. 2010; 79: 15-32.
  11. Matsumoto N., Sato K., Yoshida K., Hashimoto K., Toda Y. Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. Acta Biomaterialia. 2009; 5 (8): 3157-64.
  12. Хон В.Э., Загородний Н.В., Жадин А.В., Кузьменков К.А., Цискарашвили А.В. Роль операции Гирдлестоуна в лечении инфекционных осложнений после эндопротезирования тазобедренного сустава. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2013; 3: 25-30.
  13. Zak O., Sande M. Handbook of animal models of infection. London: Academic Press; 1998: 599-604.
  14. Bernthal N.M., Stavrakis A.I., Billi F., Cho J.S., Kremen T.J., Simon S.I. et al. A mouse model of post-arthroplasty staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS ONE; 2010; 5 (9): e12580.
  15. Хон В.Э., Загородний Н.В., Комлев В.С., Фадеева И.В., Булгаков В.Г., Сергеева Н.С. и др. Влияние степени замещения кальция серебра в трикальцийфосфате на его биологические свойства in vitro. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2013; 4: 23-8.
  16. Nelson D.R., Buxton T.B., Luu Q.N., Rissing J.P. The promotional effect of bone wax on experimental Staphylococcus Aureus osteomyelitis. J. Thorac. Cardiovasc. Surg. 1990; 99: 977-80.

Statistics

Views

Abstract - 25

Cited-By


Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2014 Khon V.E., Zagorodniy N.V., Mamonov V.E., Glasko E.N., Petrakova N.V., Shal’nev A.N., Pkhakadze T.Y., Komlev V.C.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies