Bone Cement and Local Antibiotic Therapy in Purulent Osteology

Abstract


In special literature more and more attention is paid to the problem of periprosthetic infection that is stipulated by increasing number of arthroplasties performed all over the world including Russia. Not declining rate of such complications is grounded by the conditions of intervention performance, concomitant diseases and peculiarities of pathogenic microflora. Unfortunately the conventional schemes of systemic therapy are not always applicable in purulent periprosthetic process development that requires local antibiotic delivery. Review of foreign literate is dedicated to the modern aspects of treatment by adding antibiotics to bone cement.

About the authors

I. F Akhtyamov

Kazan’ State Medical University, Kazan’, Russia

Email: yalta60@mail.ru

G. V Kuropatkin

Samara State Medical University, Samara, Russia


E. B Gatina

Kazan’ State Medical University, Kazan’, Russia


T. A Kil’metov

Kazan’ State Medical University, Kazan’, Russia


I. K Eryomin

Kazan’ State Medical University, Kazan’, Russia


E. D Kurmangaliev

Kazan’ State Medical University, Kazan’, Russia


References

  1. Hanssen A., Rand J. Evaluation and treatment of infection at the site of a total hip or knee arthroplasty. Instr. Course Lect. 1999; 48: 111-22.
  2. Moyad T.F., Thornhill T., Estok D. Evaluation and management of the infected total hip and knee. Orthopedics. 2008; 31 (6): 581-8.
  3. Kurtz S.M., Ong K.L., Lau E. et al. Prosthetic joint infection risk after TKA in the Medicare population. Clin. Orthop. Relat. Res. 2010; 468 (1): 52-6.
  4. Calhoun J.H., Henry S.L., Anger D.M., Cobos J.A., Mader J.T. The treatment of infected nonunions with gentamicin-polymethylmethacrylate antibiotic beads. Clin. Orthop. Relat. Res. 1993; (295): 23-7.
  5. Fern´andez-Hidalgo N., Gavald`a J., Almirante B. et al. Evaluation of linezolid, vancomycin, gentamicin and ciprofloxacin in a rabbit model of antibiotic-lock technique for Staphylococcus aureus catheterrelated infection. J. Antimicrob. Chemother. 2010; 65 (3): 525-30.
  6. Illingworth K.D., Mihalko W.M., Parvizi J. Sculco T., McArthur B., el Bitar Y., Saleh K.J. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: a multicenter approach: AAOS exhibit selection. J Bone Joint Surg. Am. 2013; 95 (8): e50.
  7. EARSS Annual Report - Antimicrobial resistance surveillance in Europe 2009. Annual report of the European Antimicrobial resistance Surveillance Network (EARS-Net). http://ecdc.europa.eu/en/publications/Publications/1011_SUR_annual_EARS_Net_2009.pdf
  8. Evas R et al. Orthopaedic infection: community-associated and healthcare-associated methicillin-resistant Staphyllococcus aureus (MRSA) - AAOS 2008.
  9. Buchholz H.W., Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins [in German]. Chirurg. 1970; 41(11): 511-5.
  10. Gogia J.S., Meehan J.P., Di Cesare P.E., Jamali A.A. Local antibiotic therapy in osteomyelitis. Semin. Plast. Surg. 2009; 23 (2): 100-7.
  11. Sculco T.P. The economic impact of infected joint arthroplasty. Orthopedics. 1995; 18: 871-3.
  12. Bozic K.J., Kurtz S.M., Lau E. Ong K., Chiu V., Vail T.P., et al. The epidemiology of revision total knee arthroplasty in the United States. Clin. Orthop. Relat. Res. 2010; 468 (1): 45-51.
  13. Raut V.V., Siney P.D., Wroblewski B.M. One-stage revision of total hip arthroplasty for deep infection. Long-term follow-up. Clin. Orthop. Relat. Res. 1995; (321): 202-7.
  14. Degen R.M. Davey J.R., Davey J.R., Howard J.L., McCalden R.W., Naudie D.D. Does a prefabricated gentamicin-impregnated, load-bearing spacer control periprosthetic hip infection? Clin. Orthop. Relat. Res. 2012; 470 (10): 2724-9.
  15. Segawa H., Tsukayama D.T., Kyle R.F., Becker D.A., Gustilo R.B. Infection after total knee arthroplasty. A retrospective study of the treatment of eighty-one infections. J. Bone Joint Surg. Am. 1999; 81 (10): 1434-45.
  16. Parvizi J., Saleh K.J., Ragland P.S., Pour A.E., Mont M.A. Efficacy of antibiotic-impregnated cement in total hip replacement. Acta Orthop. 2008; 79 (3): 335-41.
  17. Pattin C., De Geest T., Ackerman P., Audenaert E. Preformed gentamicin spacer in two-stage revision hip arthroplasty: functional results and complications. Int. Orthop. 2011; 35 (10): 1471-6.
  18. Meyer J., Piller G., Spiegel C.A., Hetzel S., Squire M. Vacuum-mixing significantly changes antibiotic elution characteristics of commercially available antibiotic-impregnated bone cements. J. Bone Joint Surg. Am. 2011; 93 (22): 2049-56.
  19. Hsieh P.H., Tai C.L., Lee P.C., Chang Y.H. Liquid gentamicin and vancomycin in bone cement: a potentially more cost-effective regimen. J. Arthroplasty. 2009; 24 (1): 125-30.
  20. Amin T.J., Lamping J.W., Hendricks K.J., McIff T.E. Increasing the elution of vancomycin from high-dose antibiotic-loaded bone cement: a novel preparation technique. J. Bone Joint Surg. Am. 2012; 94 (21): 1946-51.
  21. Samuel S., Ismavel R., Boopalan P.R., Matthai T. Practical considerations in the making and use of high-dose antibiotic-loaded bone cement. Acta Orthop. Belg. 2010; 76 (4): 543-45.
  22. Dunne N.J., Hill J., McAfee P., Kirkpatrick R., Patrick S., Tunney M. Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: effect on handling and mechanical properties, antibiotic release, and biofilm formation. Proc. Inst. Mech. Eng. H. 2008; 222 (3): 355-65.
  23. Anagnostakos K., Wilmes P., Schmitt E., Kelm J. Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop. 2009; 80 (2): 193-7.
  24. Koo K.H., Yang J.W., Cho S.H., Song H.R., Park H.B., Ha Y.C. et al. Impregnation of vancomycin, gentamicin, and cefotaxime in a cement spacer for two-stage cementless reconstruction in infected total hip arthroplasty. J. Arthroplasty. 2001; 16 (7): 882-92.
  25. Baleani M., Traina F., Toni A. The mechanical behavior of a pre-formed hip. Hip International. 2003; 13 (3): 159-62.
  26. Masri B.A., Duncan C.P., Beauchamp C.P. Long-term elution of antibiotics from bone-cement: an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system. J. Arthroplasty. 1998; 13 (3): 331-8.
  27. Hanssen A.D., Spangehl M.J. Practical applications of antibiotic-loaded bone cement for treatment of infected joint replacements. Clin. Orthop. Relat. Res. 2004; (427): 79-85.
  28. Van de Belt H., Neut D., Uges D.R. Schenk W., van Horn J.R., van der Mei H.C., Busscher H.J. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials. 2000; 21 (19): 1981-7.
  29. Penner M.J., Masri B.A., Duncan C.P. Elution characteristics of vancomycin and tobramycin combined in acrylic bone cement. J. Arthroplasty. 1996; 11 (8): 939-44.
  30. Belkoff S.M., Sanders J.C., Jasper L.E. The effect of the monomer-to-powder ratioon the material properties of acrylic bone cement. J. Biomed. Mater. Res. 2002; 63 (4): 396-9.
  31. Kuechle D.K., Landon G.C., Musher D.M., Noble P.C. Elution of vancomycin, daptomycin, and amikacin from acrylic bone cement. Clin. Orthop. Relat. Res. 1991; (264): 302-8.
  32. Seeley S.K., Seeley J.V., Telehowski P., Martin S., Tavakoli M., Colton S.L. Volume and surface area study of tobramycin-polymethylmethacrylate beads. Clin. Orthop. Relat. Res. 2004; (420): 298-303.
  33. Hanssen A.D. Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin. Orthop. Relat. Res. 2005; (437): 91-6.
  34. Bertazzoni Minelli E et al. PMMA as drug delivery system and in vivo. release from spacers. In: Meani E., Romano C., Crosby L., Hofmann G., eds. Infection and local treatment in orthopedic surgery. Springer-Verlag; 2007.
  35. Scott C.P., Higham P.A., Dumbleton J.H. Effectiveness of bone cement containing tobramycin. An in vitro susceptibility study of 99 organisms found in infected joint arthroplasty. J Bone Joint Surg Br. 1999; 81 (3): 440-3.
  36. Brien W.W., Salvati E.A., Klein R., Brause B., Stern S. Antibiotic impregnated bone cement in total hip arthroplasty. An in vivo comparison of the elution properties of tobramycin and vancomycin. Clin. Orthop. Relat. Res. 1993; (296): 242-8.
  37. Rice D., Vigo L. Daptomycin in bone and joint infection: a review of the literature. Arch. Orthop. Trauma Surg. 2009; 129: 1495-504.
  38. Kaplan L., Kurdziel M., Baker K.C., Verner J. Characterization of daptomycin-loaded antibiotic cement. Orthopedics. 2012; 35 (4): e503-9.
  39. Patrick B.N., Rivey M.P., Allington D.R. Acute renal failure associated with vancomycin- and tobramycin-laden cement in total hip arthroplasty. Ann. Pharmacother. 2006; 40 (11): 2037-42.
  40. Springer B.D., Lee G.C., Osmon D. Haidukewych G.J., Hanssen A.D., Jacofsky D.J. Systemic safety of high-dose antibiotic-loaded cement spacers after resection of an infected total knee arthroplasty. Clin Orthop Relat Res. 2004; (427): 47-51.
  41. Naal F.D., Salzmann G.M., von Knoch F., Tuebel J., Diehl P., Gradinger R., Schauwecker J. The effects of clindamycin on human osteoblasts in vitro. Arch. Orthop. Trauma Surg. 2008; 128 (3): 317-23.
  42. Geert T., Ensing G.T., van Horn J.R., van der Mei H.C. Busscher H.J., Neut D. Copal bone cement is more effective in preventing biofilm formation than Palacos R-G. Clin. Orthop. Relat. Res. 2008; 466 (6): 1492-8.
  43. Fink B., Vogt S., Reinsch M., Büchner H. Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses. Clin. Orthop. Relat. Res. 2011; 469 (11): 3141-7.
  44. Sener M., Kazimoglu C., Karapinar H. Günal I, Afşar I, Karataş Sener AG. Comparison of various surgical methods in the treatment of implant-related infection. Int. Orthop. 2010; 34 (3): 419-23.
  45. McKee M.D., Li-Bland E.A., Wild L.M., Schemitsch E.H. A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J. Orthop. Trauma. 2010; 24 (8): 483-90.
  46. Grimsrud C., Raven R., Fothergill A.W., Kim H.T. The in vitro elution characteristics of antifungal-loaded PMMA bone cement and calcium sulfate bone substitute. Orthopedics. 2011; 34 (8): 378-81.
  47. Wahl P., Livio F., Jacobi M., Gautier E., Buclin T. Systemic exposure to tobramycin after local antibiotic treatment with calcium sulphate as carrier material. Arch. Orthop. Trauma Surg. 2011; 131 (5): 657-62.
  48. D’Angelo F Negri L., Binda T., Zatti G., Cherubino P. The use of a preformed spacer in two-stage revision of infected hip arthroplasties. Musculoskelet. Surg. 2011; 95 (2):115-20.
  49. Jung J., Schmid N.V., Kelm J., Schmitt E., Anagnostakos K. Complications after spacer implantation in the treatment of hip joint infections. Int. J. Med. Sci. 2009; 6 (5): 265-73.
  50. Masri B., Davidson D., Duncan C. et al. Total hip arthroplasty complications. In: Barrack R.L., Booth R.E. Jr, Lonner J.H., McCarthy J.C., Mont M.A., Rubash H.E. eds. Orthopaedic knowledge update: hip and knee reconstruction. Rosemont, IL: AAOS; 2009: 475-500.
  51. Ong K.L., Kurtz S.M., Lau E., Bozic K.J., Berry D.J., Parvizi J. Prosthetic joint infection risk after total hip arthroplasty in the Medicare population. J. Arthroplasty. 2009; 24 (6Suppl): 105-9.

Statistics

Views

Abstract - 30

Cited-By


Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2014 Akhtyamov I.F., Kuropatkin G.V., Gatina E.B., Kil’metov T.A., Eryomin I.K., Kurmangaliev E.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies