Restoration of Bone Tissue in Femoral Condyles' Critical Defect in Rabbits Using Bioresorbable Calcium Carriers and Multipotent Mesenchymal Stromal Cells


Study of the efficacy of autologous bone marrow multipotent mesenchymal stromal cells (MMSC) with bioresorbable calcium carriers for the restoration of bone tissue in the site of critical distal femur spongy bone defect was performed in rabbits. System of rabbit's MMSC cultivation has been elaborated. After 2 - 3 passages MMSC were placed on bioresorbable calcium carriers and implanted into the site of preliminary created defect with 6 cm diameter. It was shown that implantation of MMSC in combination with bioresorbable carriers into the defect resulted in filling of spongy bone defect within 6 months after operation. The data obtained open promising perspectives for the application of MMSC in combination with appropriate carriers in tissue engineering for the treatment of vast skeleton injuries.


  1. Arrington E.D., Smith W.J, Chambers H.G. et al. Complications of iliac crest bone graft harvesting //Clin. Orthop. - 1996. - N 453. - P. 300-309.
  2. Butnariu-Ephrat M., Robinson D., Mendes D.G. et al. Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow //Clin. Orthop. - 1996. - N 453. - P. 234-243.
  3. Caplan A.I. Why are MSCs therapeutic? New data: new insight //J. Pathol. - 2009. - Vol. 217. - P. 318-324.
  4. Chertkov J.L., Drize N.J., Gurevitch O.A., Udalov G.A. Hemopoietic stromal precursors in long-term culture of bone marrow: I. Precursor characteristics, kinetics in culture, and dependence on quality of donor hemopoietic cells in chimeras //Exp. Hematol. - 1983. - Vol. 11. - P. 231-242.
  5. Dounchis J.S., Coutts R.D., Amiel D. Cartilage repair with autogenic perichondrium cell/polylactic acid grafts: a two-year study in rabbits //J. Orthop. Res. - 2000. - Vol. 18. - P. 512-515.
  6. Goshima J., Goldberg V.M., Caplan A.I. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks //Clin. Orthop. - 1991. - N 448. - P. 298-311.
  7. Gundle R., Joyner C.J., Triffitt J.T. Human bone tissue formation in diffusion chamber culture in vivo by bone-derived cells and marrow stromal fibroblastic cells //Bone. - 1995. - Vol. 16. - P. 597-601.
  8. Hollinger J.O., Brekke J., Gruskin E., Lee D. Role of bone substitutes //Clin. Orthop. - 1996. - N 453. - P. 55-65.
  9. Hutmacher D.W. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives //J. Biomater. Sci. Polym. - 2001. - Vol. 12. - P. 107-124.
  10. Hutmacher D.W., Sittinger M., Risbud M.V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems //Trends Biotechnol. - 2004. - Vol. 22. - P. 354-362.
  11. Kondo N., Ogose A., Tokunaga K. et al. Bone formation and resorption of highly purified beta-tricalcium phosphate in the rat femoral condyle //Biomaterials. - 2005. - Vol. 26. - P. 5600-5608.
  12. Nakasa T., Ishida O., Sunagawa T. et al. Feasibility of prefabricated vascularized bone graft using the combination of FGF-2 and vascular bundle implantation within hydroxyapatite for osteointegration //J. Biomed. Mater. Res. - 2008. - Vol. 85. - P. 1090-1095.
  13. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues //Science. - 1997. - Vol. 276. - P. 71-74.
  14. Richardson S.M., Hoyland J.A., Mobasheri R. et al. Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering //J. Cell Physiol. - 2010. - Vol. 222. - P. 23-32.
  15. Sacchetti B., Funari A., Michienzi S. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment //Cell. - 2007. - Vol. 131. - P. 324-336.
  16. Salgado A.J., Coutinho O.P., Reis R.L. Bone tissue engineering: state of the art and future trends //Macromol. Biosci. - 2004. - Vol. 4. - P. 743-765.
  17. Shao X., Goh J.C., Hutmacher D.W. et al. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model //Tissue Eng. - 2006. - Vol. 12. - P. 1539-1551.
  18. Wakitani S., Goto T., Pineda S.J. et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage //J. Bone Jt Surg. - 1994. - Vol. 76A. - P. 579-592.
  19. Wakitani S., Goto T., Young R.G. et al. Repair of large full-thickness articular cartilage Wakitani S., Goto T., Pineda S.J. et al. Mesenchymal cell-based repair of large, full-defects with allograft articular chondrocytes embedded in a collagen gel //Tissue Eng. - 1998. - Vol. 4. - P. 429-444.
  20. Weissman I.L., Anderson D.J., Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations //Annu. Rev. Cell Dev. Biol. - 2001. - Vol. 17. - P. 387-403.
  21. Wermelin K., Suska F., Tengvall P. et al. Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats //Bone. - 2008. - Vol. 42. - P. 365-371.



Abstract - 18


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2011 Mamonov V.E., Shipunova I.N., Svinareva D.A., Proskurina N.V., Ryashentsev M.M., Chemis A.G., Glasko E.N., Drize N.I., Mamonov V.E., Shipunova I.N., Svinaryova D.A., Proskurina N.V., Ryashentsev M.M., Chemis A.G., Glasko E.N., Drize N.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies