Dynamics of bone tissue metabolism in the complex treatment of chronic posttraumatic osteomyelitis of long bones

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Introduction: Chronic post-traumatic osteomyelitis is a complex problem of modern traumatology and orthopedics, affecting, in addition to medical, social and economic aspects of healthcare. When planning treatment, it is necessary to take into account the metabolic state of the bone tissue, since the effect of an infectious pathogen goes far beyond the “classical” lytic process, disrupting the balance of bone formation and bone resorption in various ways. The study is devoted to the study of the dynamics of parameters reflecting the metabolism of bone tissue in patients receiving complex therapy for chronic post-traumatic osteomyelitis of long bones.

Aim: To study the dynamics of metabolic disorders of bone tissue in patients with orthopedic infection of long bones and large joints under conditions of ongoing complex etiotropic and compensatory therapy for 6 months, the timing of bone tissue consolidation — within 2 years from the moment of surgery.

Materials and methods: The study was prospective, observational, comparative, exploratory, involving 138 patients with post-traumatic chronic osteomyelitis of the long bones. Complex therapy included a combination of surgical treatment with antibacterial, anti-inflammatory therapy and drug correction of the revealed disorders of bone metabolism. The timing of the consolidation of bone defects after treatment and the dynamics of indicators of bone metabolism were studied.

Results: The similarity of the periods of consolidation of different segments in the conditions of the described therapy was shown; the time period corresponding to the most pronounced dynamics of changes (correction) of violations was determined (3 months from the beginning of treatment); shows the effectiveness of metabolic therapy for the treatment of osteoarticular infections in various anatomical segments of the extremities. The results corresponds both to the results of the previous study and to the pathophysiological aspects of bone metabolism described in the literature.

Conclusion: the timing of consolidation in the treatment of metabolic disorders is generally similar; the greatest changes in the parameters of bone metabolism are recorded within 3 months after the start of therapy. Also, the metabolic therapy regimen can be considered as universal for all segments.

Full Text

Restricted Access

About the authors

Archil V. Tsiskarashvili

Priorov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: archil.tsiskarashvili@gmail.com

Russian Federation, Moscow

MD, Cand. Sci. (Med.), traumatologist-orthopedist of the highest qualification category, Head of the department of the consequences of injuries of the musculoskeletal system and purulent complications

Svetlana S. Rodionova

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: centrosteoporoza@gmail.com

Russian Federation, Moscow

MD, PhD, Dr. Sci. (Med.), Professor, Head of the Osteoporosis Center

Sergey P. Mironov

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: armed05@mail.ru

Russian Federation, Moscow

MD, PhD, Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Honorary President

Dmitry S. Gorbatyuk

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: gorbatyukds@cito-priorov.ru

Russian Federation, Moscow

researcher of the department of the consequences of injuries of the musculoskeletal system and purulent complications

Alexander Yu. Taraskin

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: aletr2009@yandex.ru

Russian Federation, Moscow

postgraduate student of the department of the consequences of injuries of the musculoskeletal system and purulent complications


  1. Thwaites G, Gant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? Nat Rev Microbio. 2011;9(3):215–222. doi: 10.1038/nrmicro2508.
  2. Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol. 2015;5:85. doi: 10.3389/fcimb.2015.00085.
  3. Claro T, Widaa A, O’Seaghda M. Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One. 2011;6(4):e18748. doi: 10.1371/journal.pone.0018748.
  4. Цискарашвили А.В., Родионова С.С., Миронов С.П., и др. Метаболические нарушения костной ткани у пациентов с переломами длинных костей, осложненных хроническим остеомиелитом. Гений ортопедии. 2019;25(2):149–155. [Tsiskarashvili AV, Rodionova SS, Mironov SP, et al. Metabolic bone tissue disorders in patients with long bone fractures complicated by chronic osteomyelitis. Genii ortopedii. 2019;25(2):149–155. (In Russ.)] doi: 10.18019/1028-4427-2019-25-2-149-155.
  5. Травматология: национальное руководство / Под ред. Г.П. Котельникова, С.П. Миронова. М.: ГЭОТАР-МЕД, 2008. [Travmatologiya: natsional’noe rukovodstvo. Ed by G.P. Kotel’nikov, S.P. Mironov. Moscow: GEOTAR-MED; 2008. (In Russ.)]
  6. Леонова С.Н., Рехов А.В., Камека А.Л. Традиционное хирургическое лечение пациентов с переломами костей голени, осложненными хроническим травматическим остеомиелитом. Бюллетень ВСНЦ СО РАМН. 2013;(2– 1):45–48. [Leonova SN, Rekhov AV, Kameka AL. Traditional surgical treatment of patients with leg fractures complicated by chronic traumatic osteomyelitis. Byulleten’ VSNTs SO RAMN. 2013;(2–1):45–48. (In Russ.)]
  7. Леонова С.Н., Рехов А.В., Камека А.Л. Лечение переломов, осложненных гнойной инфекцией. Сибирский медицинский журнал. 2013;120(5):141–143. [Leonova SN, Rekhov AV, Kameka AL. Treatment of fractures complicated by purulent infection. Sibirskii meditsinskii zhurnal. 2013;120(5):141–143. (In Russ.)]
  8. Леончук Д.С., Сазонова Н.В., Ширяева Е.В., Клюшин Н.М. Хронический посттравматический остеомиелит плеча: экономические аспекты лечения методом чрескостного остеосинтеза аппаратом Илизарова. Гений ортопедии. 2017;23(1):74–79. [Leonchuk DS, Sazonova NV, Shiryaeva EV, Klyushin NM. Chronic post-traumatic osteomyelitis of the shoulder: economic aspects of treatment by the method of transosseous osteosynthesis with the Ilizarov apparatus. Genii ortopedii. 2017;23(1):74–79. (In Russ.)]
  9. Brause B. Infections with prostheses in bones and joints. In: Mandell G, Bennett J, Dolin R, eds. Principles and Practice of Infectious Diseases. 7th ed. Philadelphia: Churchill Livingstone; 2010.
  10. Khatod M, Botte MJ, Hoyt DB, et al. Outcomes in open tibia fractures: relationship between delay in treatment and infection. J Trauma. 2003;55(5):949–954. doi: 10.1097/01.TA.0000092685.80435.63.
  11. Микулич Е.В. Современные принципы лечения хронического остеомиелита. Вестник новых медицинских технологий. 2012;19(2):180. [Mikulich EV. Modern principles of treatment of chronic osteomyelitis. Vestnik novykh meditsinskikh tekhnologii. 2012;19(2):180. (In Russ.)]
  12. Takayanagi H, Ogasawara K, Hida S, et al. Tcell-mediated regulation of osteoclastogenesis by signaling cross-talk between RANKL and IFN-gamma. Nature. 2002;408(6812):600–605. doi: 10.1038/35046102.
  13. Theill LE, Boyle WJ, Penninger JM. KANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20:795–823.
  14. Stashenko P, Dewhirst FE, Peros WJ, et al. Synergistic interactions between interleukin-1, tumor necrosis factor and lymphotoxin in bone resorption. J Immunol. 1987;138(5):1464–1468.
  15. Thomson BM, Mundy GR, Chambers TJ. Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol. 1987;138(3):775–779.
  16. Ishimi Y, Miyaura C, Jin CH, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990;145(10):3297–3303.
  17. Kavanagh N, Ryan EJ, Widaa A, et al. Staphylococcal osteomyelitis: disease progression, treatment challenges and future directions. Clin Microbiol Rev. 2018;31(2):e00084-17. doi: 10.1128/CMR.00084-17.
  18. Wang Y, Liu X, Dou C, et al. Staphylococcal protein A promotes osteoclastogenesis through MAPK signaling during bone infection. J Cell Physiol. 2017;232(9):2396–2406. doi: 10.1002/jcp.25774.
  19. Ren LR, Wang ZH, Wang H, et al. Staphylococcus aureus induces osteoclastogenesis via the NF-κB signaling pathway. Med Sci Monit. 2017;23(4):4579–4590. doi: 10.12659/MSM.903371.
  20. Grbic R, Miric DJ, Kisic B, et al. Sequentional analysis of oxidative stress markers and vitamin C status in acute bacterial osteomyelitis. Mediators Inflamm. 2014;2014:975061. doi: 10.1155/2014/975061.
  21. Borsiczky B, Szabó Z, Jaberansari MT, et al. Activated PMNs lead to oxidative stress on chondrocytes: a study of swine knees. Acta Orthop Scand. 2003;74(2):190–195. doi: 10.1080/00016470310013941.
  22. Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodelling and disease. Trends Mol Med. 2009;15(10):468–477. doi: 10.1016/j.molmed.2009.08.004.
  23. Рогова Л.Н., Шестерина Н.В., Замечник Т.В., Фастова И.А. Матриксные металлопротеиназы, их роль в физиологических и патологических процессах (Обзор). Вестник новых медицинских технологий. 2011;18(2):86–89. [Rogova LN, Shesterina NV, Zamechnik TV, Fastova IA. Matrix metalloproteinases, their role in physiological and pathological processes (Review). Vestnik novykh meditsinskikh tekhnologii. 2011;18(2):86–89. (In Russ.)]
  24. Протасов М.В., Смагина Л.В., Галибин О.В. Зависимость активности ММП в раневом экссудате крыс от состояния тканей раны на начальных этапах раневого процесса. Цитология. 2008;50(10):882–886. [Protasov MV, Smagina LV, Galibin OV. Dependence of MMP activity in rat wound exudate on the state of wound tissues at the initial stages of the wound process. Tsitologiya. 2008;50(10):882–886. (In Russ.)]
  25. Lukens JR, Gross JM, Calabrese C, et al. Critical role for inflammasome-independent IL-1ß production in osteomyelitis. Proc Natl Acad Sci U S A. 2014;111(3):1066–1071. doi: 10.1073/pnas.1318688111.
  26. Миронов С.П., Цискарашвили А.В., Горбатюк Д.С. Хронический посттравматический остеомиелит как проблема современной травматологии и ортопедии (обзор литературы). Гений ортопедии. 2019;25(4):610–621. [Mironov SP, Tsiskarashvili AV, Gorbatyuk DS. hronic post-traumatic osteomyelitis as a problem of contemporary traumatology and orthopedics (literature review). Genii ortopedii. 2019;25(4):610–621. (In Russ.)] doi: 10.18019/1028-4427-2019-25-4-610-621.
  27. Wagner JM, Jaurich H, Wallner C, et al. Diminished bone regeneration after debridement of posttraumatic osteomyelitis is accompanied by altered cytokine levels, elevated B cell activity, and increased osteoclast activity. J Orthop Res. 2017;35(11):2425–2434. doi: 10.1002/jor.23555.
  28. Цискарашвили А.В. Лечение больных с переломами длинных костей, осложненных гнойной инфекцией, с учетом биомеханической концепции фиксации отломков: Автореф. дис. ... канд. мед. наук. M., 2009. [Tsiskarashvili AV. Lechenie bol’nykh s perelomami dlinnykh kostei, oslozhnennykh gnoinoi infektsiei, s uchetom biomekhanicheskoi kontseptsii fiksatsii otlomkov. [dissertation abstract] Moscow; 2009. (In Russ.)]
  29. Пичхадзе И.М. Атлас переломов конечностей и таза. M., 2002. [Pichkhadze IM. Atlas perelomov konechnostei i taza. Moscow; 2002. (In Russ.)]
  30. Патент РФ на изобретение № 2176519/ 10.12.01. Бюл. № 34. Родионова С.С., Попова Т.П., Балберкин А.В., Колондаев А.Ф., Клюшниченко И.В. Способ профилактики потери костной ткани вокруг имплантатов при эндопротезировании. [Patent RUS №2176519/10.12.01. Byul. № 34. Rodionova SS, Popova TP, Balberkin AV, Kolondaev AF, Kljushnichenko IV. Method for preventing from bone tissue losses around implants when using endoprosthesis. (In Russ.)] Режим доступа: https://www.elibrary.ru/item.asp?id=37871093. Дата обращения: 12.12.2020.
  31. Gadomski BC, McGilvray KC, Easley JT, et al. Partial gravity unloading inhibits bone healing responses in a large animal model. J Biomech. 2014;47(12):2836–2842. doi: 10.1016/j.jbiomech.2014.07.031.
  32. Gadomski BC, Lerner ZF, Browning RC, et al. Computational characterization of fracture healing under reduced gravity loading conditions. J Orthop Res. 2016;34(7):1206–1215. doi: 10.1002/jor.23143 .
  33. Swaffield TP, Neviaser AS, Lehnhardt K. Fracture risk in spaceflight and potential treatment options. Aerosp Med Hum Perform. 2018;89(12):1060–1067. doi: 10.3357/AMHP.5007.2018.
  34. Vico L, Collet P, Guignandon A, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000;355(9215):1607–1611. doi: 10.1016/s0140-6736(00)02217-0.
  35. Bellido T, Saini V, Pajevic PD. Effects of PTH on osteocyte function. Bone. 2013;54(2):250–257. doi: 10.1016/j.bone.2012.09.016.
  36. Elmaataoui A, Elmachtani Idrissi S, Dami A, et al. [Association between sex hormones, bone remodeling markers and bone mineral density in postmenopausal women of Moroccan origin (cross-sectional study)] Pathol Biol (Paris). 2016;62(1):49–54. (In French.) doi: 10.1016/j.patbio.2013.11.001.
  37. Nakamura K, Saito T, Oyama M, et al. Vitamin D sufficiency is associated with low incidence of limb and vertebral fractures in community-dwelling elderly Japanese women: the Muramatsu study. Osteoporos Int. 2011;22(1):97–103. doi: 10.1007/s00198-010-1213-6.
  38. Ardawi MS, Qari MH, Rouzi AA, et al. Vitamin D status in relation to obesity, bone mineral density, bone turnover markers and vitamin D receptor genotypes in healthy Saudi pre- und postmenopausal women. Osteoporos Int. 2011;22(2):463–475. doi: 10.1007/s00198-010-1249-7.
  39. Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s Guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–2381. doi: 10.1007/s00198-014-2794-2.
  40. Tsiskarashvili A, Zagorodny N, Rodionova S, Gorbatyuk D. Metabolic disorders in patients with chronic osteomyelitis: etiology and pathogenesis. In: Clinical Implementation of Bone Regeneration and Maintenance. IntechOpen; 2020. doi: 10.5772/intechopen.92052.
  41. Плещева А.В., Пигарова Е.А., Дзеранова Л.К. Витамин D и метаболизм: факты, мифы и предубеждения. Ожирение и метаболизм. 2012;9(2):33–42. [Pleshcheva AV, Pigarova EA, Dzeranova LK. Vitamin D and metabolism: facts, myths and preconceptions. Ozhirenie i metabolizm. 2012;9(2):33–42. (In Russ).]
  42. Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е., и др. Клинические рекомендации Российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых. Проблемы эндокринологии. 2016;62(4):60–84. [Pigarova EA, Rozhinskaya LY, Belaya JE, et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of Endocrinology. 2016;62(4):60–84. (In Russ.)] doi: 10.14341/probl201662460-84.
  43. Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone–immune interactions in health and disease. Nat Rev Immunol. 2019;19(10):626–642. doi: 10.1038/s41577-019-0178-8.
  44. Tomizawa T, Ishikawa M, Bello-Irizarry SN, et al. Biofilm producing staphylococcus epidermidis (RP62A Strain) inhibits osseous integration without osteolysis and histopathology in a murine septic implant model. J Orthop Res. 2020;38(4):852–860. doi: 10.1002/jor.24512.
  45. Lorenzo J. The many ways of osteoclast activation. J Clin Invest. 2017;127(7):2530–2532. doi: 10.1172/JCI94606.
  46. Kitazawa R, Haraguchi R, Fukushima M, Kitazawa S. Pathologic conditions of hard tissue : role of osteoclasts in osteolytic lesion. Histochem Cell Biol. 2018;149(4):405–415. doi: 10.1007/s00418-018-1639-z.



Abstract - 25

PDF (Russian) - 6


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2020 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies