Our experience in 3D-modelling in pilon (distal tibial plafond) fractures

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Internal fixation of pilon fractures remains challenging despite the development of new technologies in medical imaging and implant design and various scientific investigations on this problem. A key point in therapeutic strategy is preoperative planning. Since the beginning of the twenty-first century, the procedure has changed dramatically from plain radiograph drawing to 3D models and internal fixation simulation in vitro.

AIM: This study aimed to evaluate 3D modeling in pilon fracture osteosynthesis preoperative planning.

MATERIALS AND METHODS: The study used open, prospective, randomized, and comparative analysis. We analyzed the data of 60 patients with pilon fractures who had undergone surgical treatment for pilon fractures between July 1, 2020, and December 12, 2021, in Moscow City Hospital No. 17. In 30 patients, 3D models were used in preoperative planning, and in another 30 patients, the traditional planning method was performed. The operation time, intraoperation, X-ray dosage, blood loss, fracture reduction quality, and long-term results were analyzed. Additionally, the surgeon’s comfort in applying the 3D model and ease of doctor–patient communication were assessed using questionnaires.

RESULTS: Results showed that 3D modeling in pilon fracture osteosynthesis preoperative planning has advantages over traditional preoperative planning.

CONCLUSION: Therefore, 3D planning is a promising novel method for distal tibial fracture internal fixation preoperative planning, which provides significant higher degree of fracture anatomy comprehension and facilitates reduction maneuvers and implant positioning.

About the authors

Mikhail V. Parshikov

Moscow State University of Medicine and Dentistry

Email: parshikovmikhail@gmail.com
ORCID iD: 0000-0003-4201-4577
SPIN-code: 5838-4366

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow

Arsenty B. Koshkin

Moscow State University of Medicine and Dentistry; City Clinical Hospital № 17

Author for correspondence.
Email: febris@mail.ru
ORCID iD: 0000-0002-7616-2255
SPIN-code: 4561-6000
Russian Federation, Moscow; Moscow

Nikolay V. Yarigin

Moscow State University of Medicine and Dentistry

Email: dom1971@yandex.ru
ORCID iD: 0000-0003-4322-6985
SPIN-code: 3258-4436

MD, Dr. Sci. (Med.), professor, corresponding member of the Russian Academy of Sciences

Russian Federation, Moscow

Sergey V. Novikov

City Clinical Hospital № 17

Email: nadin-79@bk.ru
ORCID iD: 0000-0002-5667-5184

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Andrey A. Prokhorov

Botkin City Clinical Hospital

Email: dr.prokhorov.aa@yandex.ru
ORCID iD: 0000-0002-4130-1307
Russian Federation, Moscow

Mikhail V. Govorov

Moscow State University of Medicine and Dentistry

Email: svgovorova2011@yandex.ru
ORCID iD: 0000-0003-4873-3230
SPIN-code: 5444-1777

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Rasul N. Aliev

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: rasulmed@yandex.ru
ORCID iD: 0000-0002-0876-1301
SPIN-code: 1263-7372

MD, Cand. Sci. (Med.), assistant professor

Russian Federation, Moscow

Vladimir V. Guriev

Moscow State University of Medicine and Dentistry

Email: drguriev@mail.ru
ORCID iD: 0009-0008-0842-5739
SPIN-code: 8987-2622

MD, Dr. Sci. (Med.), professor

Russian Federation, Moscow

References

  1. Mauffrey C, Vasario G, Battiston B, et al. Tibial pilon fractures: a review of incidence, diagnosis, treatment, and complications. Acta Orthop Belg. 2011;77(4):432–440.
  2. Bear J, Rollick N, Helfet D. Evolution in Management of Tibial Pilon Fractures. Curr Rev Musculoskelet Med. 2018;11(4):537–545. doi: 10.1007/s12178-018-9519-7
  3. Liporace FA, Yoon RS. Decisions and staging leading to definitive open management of pilon fractures: where have we come from and where are we now? J Orthop Trauma. 2012;26(8):488–498. doi: 10.1097/BOT.0b013e31822fbdbe
  4. Harris AM, Patterson BM, Sontich JK, Vallier HA. Results and outcomes after operative treatment of high-energy tibial plafond fractures. Foot Ankle Int. 2006;27(4):256–265. doi: 10.1177/107110070602700406
  5. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009;467(7):1800–6. doi: 10.1007/s11999-008-0543-6
  6. De-las-Heras-Romero J, Lledo-Alvarez AM, Lizaur-Utrilla A, Lopez-Prats FA. Quality of life and prognostic factors after intra-articular tibial pilon fracture. Injury. 2017;48(6):1258–1263. doi: 10.1016/j.injury.2017.03.023
  7. Tochigi Y, Rudert MJ, McKinley TO, Pedersen DR, Brown TD. Correlation of dynamic cartilage contact stress aberrations with severity of instability in ankle incongruity. J Orthop Res. 2008;26(9):1186–1193. doi: 10.1002/jor.20589
  8. Kleinertz H, Tessarzyk M, Schoof B, et al. Visualization of the distal tibial plafond articular surface using four established approaches and the efficacy of instrumented distraction: a cadaveric study. Eur J Trauma Emerg Surg. 2022;48(5):4031–4041. doi: 10.1007/s00068-022-01927-w
  9. Hull CW, inventor; Apparatus for production of three-dimensional objects by stereolithography. United States patent US 4575330. 1986 March 11.
  10. Ibrahim T, Beiri A, Azzabi M, et al. Reliability and validity of the subjective component of the american orthopaedic foot and ankle society clinical rating scales. J Foot and Ankle Surg. 2007;46(2):65–74. doi: 10.1053/j.jfas.2006.12.002
  11. Burwell HN, Charnley AD. The treatment of displaced fractures at the ankle by rigid internal fixation and early joint movement. The Journal of Bone & Joint Surgery (British Volume). 1965;47(4):634–660.
  12. Muller ME, Nazarian S, Koch P, Schatzker J. The comprehensive classification of fractures of long bones. New York: Springer; 1990.
  13. D’Heurle A, Kazemi N, Connelly C, et al. Prospective randomized comparison of locked plates versus nonlocked plates for the treatment of high-energy pilon fractures. Journal of Orthopaedic Trauma. 2015;29(9):420–423. doi: 10.1097/BOT.0000000000000386
  14. Bai J, Wang Y, Zhang P, et al. Efficacy and safety of 3D print-assisted surgery for the treatment of pilon fractures: a meta-analysis of randomized controlled trials. J Orthop Surg Res. 2018;13(1):283. doi: 10.1186/s13018-018-0976-x
  15. Meng M, Wang J, Sun T, et al. Clinical applications and prospects of 3D printing guide templates in orthopaedics. J Orthop Translat. 2022;34:22–41. doi: 10.1016/j.jot.2022.03.001
  16. Chepelev L, Wake N, Ryan J, et al.; RSNA Special Interest Group for 3D Printing. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med. 2018;4(1):11. doi: 10.1186/s41205-018-0030-y
  17. Auricchio F, Marconi S. 3D printing: clinical applications in orthopaedics and traumatology. EFORT Open Rev. 2017;1(5):121–127. doi: 10.1302/2058-5241.1.000012
  18. Skelley NW, Smith MJ, Ma R, Cook JL. Three-dimensional Printing Technology in Orthopaedics. J Am Acad Orthop Surg. 2019;27(24):918–925. doi: 10.5435/JAAOS-D-18-00746
  19. Alemayehu DG, Zhang Z, Tahir E, et al. Preoperative Planning Using 3D Printing Technology in Orthopedic Surgery. Biomed Res Int. 2021;2021:7940242. doi: 10.1155/2021/7940242
  20. Pal AK, Bhanakar U, Ray B. Three-dimensional (3D) printing: A potentially versatile tool in the field of medicine. Indian J Clin Anat Physiol. 2022;9(2):78–84. doi: 10.18231/j.ijcap.2022.020
  21. Morgan C, Khatri C, Hanna SA, Ashrafian H, Sarraf KM. Use of three-dimensional printing in preoperative planning in orthopaedic trauma surgery: a systematic review and meta-analysis. World J Orthop. 2019;11(1):57–67. doi: 10.5312/wjo.v11.i1.57
  22. Zhuang Y, Cao S, Lin Y, et al. Minimally invasive plate osteosynthesis of acetabular anterior column fractures using the two-incision minimally invasive approach and a preshaped three dimension plate. International Orthopaedics. 2016;40(10):2157–2162. doi: 10.1007/s00264-015-3111-1
  23. Yang L, Shang X-W, Fan J-N, et al. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication. BioMed Research International. 2016;2016:2482086. doi: 10.1155/2016/2482086
  24. Portalatín EL, Carrazana LF, Colon R, et al. Orthopaedic Surgeon Communication Skills: Perception of Empathy and Patient Satisfaction Through the Use of Anatomic Models. JAAOS: Global Research and Reviews. 2018;2(11):e07. doi: 10.5435/JAAOSGlobal-D-18-00071
  25. Lou Y, Cai L, Wang C, et al. Comparison of traditional surgery and surgery assisted by three dimensional printing technology in the treatment of tibial plateau fractures. International Orthopaedics. 2017;41(9):1875–1880. doi: 10.1007/s00264-017-3445-y
  26. Won S-H, Lee Y-K, Ha Y-C, Suh Y-S, Koo K-H. Improving pre-operative planning for complex total hip replacement with a Rapid Prototype model enabling surgical simulation. The Bone & Joint Journal. 2013;95-В(11):1458–1463. doi: 10.1302/0301-620X.95B11.31878
  27. Rong X, Wang B, Chen H, et al. Use of rapid prototyping drill template for the expansive open door laminoplasty: A cadaveric study. Clin Neurol Neurosurg. 2016;150:13–7. doi: 10.1016/j.clineuro.2016.08.013
  28. Merema BJ, Kraeima J, Ten Duis K, et al. The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery. Injury. 2017;48(11):2540–7. doi: 10.1016/j.injury.2017.08.059
  29. Cho W, Job AV, Chen J, Baek JH. A review of current clinical applications of three-dimensional printing in spine surgery. Asian Spine J. 2018;12(1):171–7. doi: 10.4184/asj.2018.12.1.171
  30. Buijze GA, Leong NL, Stockmans F, et al. Three-dimensional compared with two-dimensional preoperative planning of corrective osteotomy for extra-articular distal radial malunion: A multicenter randomized controlled trial. J Bone Joint Surg Am. 2018;100(14):1191–202. doi: 10.2106/JBJS.17.00544

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies