Local antibacterial depot systems in the treatment of bone and joint infection (review)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Local depot systems with high antibiotic content are an essential component of combination therapy in osteoarticular infections. These systems are effective against microbial biofilms by providing drug concentrations that surpass the requirements of planktonic bacteria. Currently, there are numerous support matrixes with various properties. Only a few of them are sufficiently studied and actively used in clinical practice. These include polymethylmethacrylate-based bone cement, calcium sulfate, collagen, allografts, etc. However, the vast majority of local systems have only been studied in vitro and in vivo. This review describes currently available depot systems, including their primary properties, advantages, and disadvantages, as well as potential for future use of a specific matrix both for the treatment and prevention of diseases.

Full Text

Restricted Access

About the authors

Regina E. Melikova

Priorov Central Research Institute of Traumatology and Orthopedics

Email: regina-melikova@mail.ru
ORCID iD: 0000-0002-5283-7078
SPIN-code: 8288-0256

MD, Cand. Sci. (Medicine)

Russian Federation, 10 Priorova str., 127299 Moscow

Archil V. Tsiskarashvili

Priorov Central Research Institute of Traumatology and Orthopedics

Author for correspondence.
Email: armed05@mail.ru
ORCID iD: 0000-0003-1721-282X
SPIN-code: 2312-1002

MD, Cand. Sci. (Medicine)

Russian Federation, 10 Priorova str., 127299 Moscow

References

  1. Garaev MR, Panteleev VS, Nartailakov MA, et al. Surgical treatment of chronic osteomyelitis. Kreativnaya hirurgiya i onkologiya. 2019;9(3):209–215. (In Russ.). doi: 10.24060/2076-3093-2019-9-3-209-215
  2. Mironov SP, Tsiskarashvili AV, Gorbatyuk DS. Chronic posttraumatic osteomyelitis as a problem of modern traumatology and orthopedics (literature review). Genij ortopedii. 2019;25(4):610–621. (In Russ.). doi: 10.18019/1028-4427-2019-25-4-610-621
  3. Huang CY, Hsieh RW, Yen HT, et al. Short-versus long-course antibiotics in osteomyelitis: A systematic review and meta-analysis. Int J Antimicrob Agents. 2019;53(3):246–260. doi: 10.1016/j.ijantimicag.2019.01.007
  4. Murylev V, Kukovenko G, Elizarov P., et al. Periprosthetic infection during hip arthroplasty. Vrach. 2018;29(3):17–22. (In Russ.). doi: 10.29296/25877305- 2018-03-04
  5. Bozic KJ, Lau E, Kurtz S, et al. Patient-related risk factors for periprosthetic joint infection and postoperative mortality following total hip arthroplasty in Medicare patients. J Bone Joint Surg Am. 2012;94(9):794–800. doi: 10.2106/JBJS.K.00072
  6. Kochish AA, Bozhkova SA, Netylko GI, Anisimova LI. Experimental study of the effectiveness of a polymer antimicrobial composition with hemostatic effect in the treatment of implant-associated infection. Genij ortopedii. 2019;25(2):180–187. (In Russ.).
  7. Murylev VYu, Kukovenko GA, Elizarov PM, et al. The algorithm of the first stage of treatment of late deep periprosthetic infection of the hip joint. Travmatologiya i ortopediya Rossii. 2018;24(4):95–104. (In Russ.). doi: 10.21823/2311-2905-2018-24-4-95-104
  8. Glushanova NA, Blinov AI, Alekseeva NB. Bacterial biofilms in human infectious pathology. Medicina v Kuzbasse. 2015;(2 supple):30–35. (In Russ.).
  9. Mardanova AM, Kabanov DA, Rudakova NL, Sharipova MR. Biofilms: Basic principles of organization and research methods: an educational and methodical manual. Kazan: K(P)FU; 2016. 42 р. (In Russ.).
  10. Tsiskarashvili AV, Melikova RE, Novozhilova EA. Analysis of six-year monitoring of the main pathogens of periprosthetic infection of large joints and their tendency to resistance. Genij ortopedii. 2022;28(2):179–188. (In Russ.). doi: 10.18019/1028-4427-2022-28-2-179-188
  11. Benito N, Franco M, Coll P, et al. Etiology of surgical site infections after primary total joint arthroplasties. J Orthop Res. 2014;32(5):633–7. doi: 10.1002/jor.22581
  12. Bozhkova SA, Kasimova AR, Tikhilov RM, et al. Adverse trends in the etiology of orthopedic infection: results of 6-year monitoring of the structure and resistance of leading pathogens. Travmatologiya i ortopediya Rossii. 2018;24(4):20–31. (In Russ.). doi: 10.21823/2311-2905-2018-24-4-20-31
  13. Drago L, De Vecchi E, Bortolin M, et al. Epidemiology and Antibiotic Resistance of Late Prosthetic Knee and Hip Infections. J Arthroplasty. 2017;32(8):2496–2500. doi: 10.1016/j.arth.2017.03.005
  14. Petukhov IN, Sokolovsky AV, Grigorievskaya ZV, et al. Infections associated with the installation of foreign materials (prostheses, meshes, implants). Zlokachestvennye opuholi. 2017;7(3):57–60. (In Russ.). doi: 10.18027/2224-5057-2017-7-3s1-57-60
  15. Schwartz TA. Biofilms as a microbial community. Vestnik KGU. 2015;(1):41–44. (In Russ.). EDN: TXHTFB
  16. Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res. 2015;10:157. doi: 10.1186/s13018-015-0294-5
  17. Bozhkova SA, Bogdanova TYa, Krasnova MV, et al. An experimental clinical study of the phenotypic features of S. Epidermidis strains and their role in the occurrence and development of implant-associated infection after orthopedic surgery. Travmatologiya i ortopediya Rossii. 2014;(2):68–77. (In Russ.).
  18. Tapalsky DV, Volotovsky PA, Kozlova AI, Sitnik AA. Antibacterial activity of coatings based on antibiotic-impregnated bone cement against microorganisms with different levels of antibiotic resistance. Travmatologiya i ortopediya Rossii. 2018;24(4):105–110. (In Russ.). doi: 10.21823/2311-2905-2018-24-4-105-110
  19. Preobrazhensky PM, Kazemirsky AV, Goncharov MY. Modern views on the diagnosis and treatment of patients with periprosthetic infection after knee replacement. Genij ortopedii. 2016;(3):94–104. (In Russ.). doi: 10.18019/1028-4427-2016-3-94-104
  20. Bishop AR, Kim S, Squire MW, Rose WE, Ploeg HL. Vancomycin elution, activity and impact on mechanical properties when added to orthopedic bone cement. J Mech Behav Biomed Mater. 2018;87:80–86. doi: 10.1016/j.jmbbm.2018.06.033
  21. Smith M, Roberts M, Al-Kassas R. Implantable drug delivery systems for the treatment of osteomyelitis. Drug Dev Ind Pharm. 2022;48(10):511–527. doi: 10.1080/03639045.2022.2135729
  22. Masters EA, Trombetta RP, de Mesy Bentley KL, et al. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res. 2019;7:20. doi: 10.1038/s41413-019-0061-z
  23. Birt MC, Anderson DW, Bruce Toby E, Wang J. Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies. J Orthop. 2016;14(1):45–52. doi: 10.1016/j.jor.2016.10.004
  24. Zegre M, Poljańska E, Caetano LA, Gonçalves L, Bettencourt A. Research progress on biodegradable polymeric platforms for targeting antibiotics to the bone. Int J Pharm. 2023;648:123584. doi: 10.1016/j.ijpharm.2023.123584
  25. Winkler H, Haiden P. Allograft Bone as Antibiotic Carrier. J Bone Jt Infect. 2017;2(1):52–62. doi: 10.7150/jbji.17466
  26. Kluin OS, van der Mei HC, Busscher HJ, Neut D. Biodegradable vs nonbiodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Deliv. 2013;10(3):341–51. doi: 10.1517/17425247.2013.751371
  27. Vasiliev AV. Development of a new class of osteoinductive bone plastic materials based on curable hydrogels for use in dentistry and maxillofacial surgery (experimental study) [dissertation]. Moscow; 2020. 292 р. (In Russ.).
  28. van Vugt TAG, Arts JJ, Geurts JAP. Antibiotic-Loaded Polymethylmethacrylate Beads and Spacers in Treatment of Orthopedic Infections and the Role of Biofilm Formation. Front Microbiol. 2019;10:1626. doi: 10.3389/fmicb.2019.01626
  29. Pedachenko EG, Kushchaev SV. Modern bone cements for puncture vertebroplasty (literature review). Ukrainskij nejrohirurgicheskij zhurnal. 2001;(4):24–31. (In Russ.).
  30. Patent RUS № 2195320 С2/ 27.12.2002. Kondratiev VM, Glinskikh AF, Navalikhin VD, et al. Polymer composition for surgical bone cement. Available from: https://yandex.ru/patents/doc/RU2195320C2_20021227?ysclid=m330nyg9aj505523366 (In Russ.). EDN: YUQNNX
  31. Nandi SK, Bandyopadhyay S, Das P, et al. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv. 2016;34(8):1305–1317. doi: 10.1016/j.biotechadv.2016.09.005
  32. Kavalersky GM, Murylev VYu, Rukin YaA, Elizarov PM, Muzychenkov AV. Revision surgery of the hip joint: the role of individual articulating spacers. Department of Traumatology and Orthopedics. 2014;(4):4–8. (In Russ.). EDN: UMSEDH
  33. Kilmetov TA, Akhtyamov IF, Gilmutdinov ISh, et al. Local antibiotic therapy for infection of the joint endoprosthesis area. Kazan Medical Journal. 2014;95(3):405–411. (In Russ.). EDN: SGXGTH
  34. Spinyak SP, Barabash AP, Lyasnikova AV. The use of spacers in the treatment of infectious complications of total knee arthroplasty. Modern problems of science and education. 2015;(5):10. (In Russ.). EDN: YTHXPD
  35. Shevchenko YL, Stoiko YM, Gritsyuk AA, et al. Local antibiotic therapy for endoprosthetics of large joints (literature review). Vestnik NMHC im. N.I. Pirogova. 2010;5(3):44–56. (In Russ.).
  36. Hinarejos P, Guirro P, Leal J, et al. The use of erythromycin and colistin-loaded cement in total knee arthroplasty does not reduce the incidence of infection: a prospective randomized study in 3000 knees. J Bone Joint Surg Am. 2013;95(9):769–74. doi: 10.2106/JBJS.L.00901
  37. Schiavone Panni A, Corona K, Giulianelli M, et al. Antibiotic-loaded bone cement reduces risk of infections in primary total knee arthroplasty? A systematic review. Knee Surg Sports Traumatol Arthrosc. 2016;24(10):3168–3174. doi: 10.1007/s00167-016-4301-0
  38. Bozhkova SA, Novokshonova AA, Konev A. Modern possibilities of local antibiotic therapy for periprosthetic infection and osteomyelitis (literature review). Travmatologiya i ortopediya Rossii. 2015;(3):92–103. (In Russ.). EDN: UXGOFB
  39. Dunne NJ, Orr JF. Influence of mixing techniques on the physical properties of acrylic bone cement. Biomaterials. 2001;22(13):1819–26. doi: 10.1016/s0142-9612(00)00363-x
  40. Balato G, Roscetto E, Vollaro A, et al. Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro. Knee Surg Sports Traumatol Arthrosc. 2019;27(6):1943–1952. doi: 10.1007/s00167-018-5230-x
  41. Shen SC, Letchmanan K, Chow PS, Tan RBH. Antibiotic elution and mechanical property of TiO2 nanotubes functionalized PMMA-based bone cements. J Mech Behav Biomed Mater. 2019;91:91–98. doi: 10.1016/j.jmbbm.2018.11.020
  42. Wall V, Nguyen TH, Nguyen N, Tran PA. Controlling Antibiotic Release from Polymethylmethacrylate Bone Cement. Biomedicines. 2021;9(1):26. doi: 10.3390/biomedicines9010026
  43. Funk GA, Menuey EM, Ensminger WP, Kilway KV, McIff TE. Elution of rifampin and vancomycin from a weight-bearing silorane-based bone cement. Bone Joint Res. 2021;10(4):277–284. doi: 10.1302/2046-3758.104.BJR-2020-0430.R1
  44. Mensah LM, Love BJ. A meta-analysis of bone cement mediated antibiotic release: Overkill, but a viable approach to eradicate osteomyelitis and other infections tied to open procedures. Mater Sci Eng C Mater Biol Appl. 2021;123:111999. doi: 10.1016/j.msec.2021.111999
  45. Dusane DH, Diamond SM, Knecht CS, et al. Effects of loading concentration, blood and synovial fluid on antibiotic release and anti-biofilm activity of bone cement beads. J Control Release. 2017;248:24–32. doi: 10.1016/j.jconrel.2017.01.005
  46. Gandomkarzadeh M, Mahboubi A, Moghimi HR. Release behavior, mechanical properties, and antibacterial activity of ciprofloxacin-loaded acrylic bone cement: a mechanistic study. Drug Dev Ind Pharm. 2020;46(8):1209–1218. doi: 10.1080/03639045.2020.1788058
  47. Cyphert EL, Learn GD, Hurley SK, Lu CY, von Recum HA. An Additive to PMMA Bone Cement Enables Postimplantation Drug Refilling, Broadens Range of Compatible Antibiotics, and Prolongs Antimicrobial Therapy. Adv Healthc Mater. 2018;7(21):e1800812. doi: 10.1002/adhm.201800812
  48. Swearingen MC, Granger JF, Sullivan A, Stoodley P. Elution of antibiotics from poly(methyl methacrylate) bone cement after extended implantation does not necessarily clear the infection despite susceptibility of the clinical isolates. Pathog Dis. 2016;74(1):ftv103. doi: 10.1093/femspd/ftv103
  49. Neut D, de Groot EP, Kowalski RS, et al. Gentamicin-loaded bone cement with clindamycin or fusidic acid added: biofilm formation and antibiotic release. J Biomed Mater Res A. 2005;73(2):165–70. doi: 10.1002/jbm.a.30253
  50. Li T, Fu L, Wang J, Shi Z. High dose of vancomycin plus gentamicin incorporated acrylic bone cement decreased the elution of vancomycin. Infect Drug Resist. 2019;12:2191–2199. doi: 10.2147/IDR.S203740
  51. Anagnostakos K, Meyer C. Antibiotic Elution from Hip and Knee Acrylic Bone Cement Spacers: A Systematic Review. Biomed Res Int. 2017;2017:4657874. doi: 10.1155/2017/4657874
  52. Pithankuakul K, Samranvedhya W, Visutipol B, Rojviroj S. The effects of different mixing speeds on the elution and strength of high-dose antibiotic-loaded bone cement created with the hand-mixed technique. J Arthroplasty. 2015;30(5):858–63. doi: 10.1016/j.arth.2014.12.003
  53. Chen IC, Su CY, Nien WH, et al. Influence of Antibiotic-Loaded Acrylic Bone Cement Composition on Drug Release Behavior and Mechanism. Polymers (Basel). 2021;13(14):2240. doi: 10.3390/polym13142240
  54. Privolnev VV, Rodin AV, Karakulina EV. Local use of antibiotics in the treatment of bone tissue infections. Klinicheskaya mikrobiologiya i antimikrobnaya himioterapiya. 2012;14(2):118–131. (In Russ.).
  55. Dunne N, Hill J, McAfee P, et al. In vitro study of the efficacy of acrylic bone cement loaded with supplementary amounts of gentamicin: effect on mechanical properties, antibiotic release, and biofilm formation. Acta Orthop. 2007;78(6):774–85. doi: 10.1080/17453670710014545
  56. Anagnostakos K, Schröder K. Antibiotic-impregnated bone grafts in orthopaedic and trauma surgery: a systematic review of the literature. Int J Biomater. 2012;2012:538061. doi: 10.1155/2012/538061
  57. Amin TJ, Lamping JW, Hendricks KJ, McIff TE. Increasing the elution of vancomycin from high-dose antibiotic-loaded bone cement: a novel preparation technique. J Bone Joint Surg Am. 2012;94(21):1946–51. doi: 10.2106/JBJS.L.00014
  58. Frutos G, Pastor JY, Martínez N, Virto MR, Torrado S. Influence of lactose addition to gentamicin-loaded acrylic bone cement on the kinetics of release of the antibiotic and the cement properties. Acta Biomater. 2010;6(3):804–11. doi: 10.1016/j.actbio.2009.08.028
  59. Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials. 2006;27(23):4239–49. doi: 10.1016/j.biomaterials.2006.03.032
  60. Shinsako K, Okui Y, Matsuda Y, Kunimasa J, Otsuka M. Effects of bead size and polymerization in PMMA bone cement on vancomycin release. Biomed Mater Eng. 2008;18(6):377–85. doi: 10.3233/BME-2008-0554
  61. Slane JA, Vivanco JF, Rose WE, Squire MW, Ploeg HL. The influence of low concentrations of a water soluble poragen on the material properties, antibiotic release, and biofilm inhibition of an acrylic bone cement. Mater Sci Eng C Mater Biol Appl. 2014;42:168–76. doi: 10.1016/j.msec.2014.05.026
  62. Yan S, Cai X, Yan W, Dai X, Wu H. Continuous wave ultrasound enhances vancomycin release and antimicrobial efficacy of antibiotic-loaded acrylic bone cement in vitro and in vivo. J Biomed Mater Res B Appl Biomater. 2007;82(1):57–64. doi: 10.1002/jbm.b.30705
  63. Kurebayashi L, de Melo AT, Andrade-Silva FB, Kojima KE, Silva JDS. Clinical evaluation of patients with vancomycin spacer retained for more than 12 months. Acta Ortop Bras. 2019;27(1):55–58. doi: 10.1590/1413-785220192701213649
  64. Afinogenov GE, Tikhilov RM, Afinogenova AG, et al. Antimicrobial biodegradable composition based on high molecular weight polyvinylpyrrolidone for the prevention of experimental osteomyelitis. Travmatologiya i ortopediya Rossii. 2010;(3):47–54. (In Russ.).
  65. Schiefer UR, Heiss C, Dingeldein E, et al. Elution kinetics and antimicrobial effects of gentamicin- and clindamycin-loaded bone cements in vitro. Z Orthop Unfall. 2008;146(1):92–8. (In German). doi: 10.1055/s-2007-989301
  66. Ermakov AM, Klyushin NM, Ababkov YuV, et al. Evaluation of the effectiveness of two-stage surgical treatment of patients with periprosthetic infection of the knee and hip joints. Genij ortopedii. 2018;24(3):321–326. (In Russ.).
  67. Lachiewicz PF, Wellman SS, Peterson JR. Antibiotic Cement Spacers for Infected Total Knee Arthroplasties. J Am Acad Orthop Surg. 2020;28(5):180–188. doi: 10.5435/JAAOS-D-19-00332
  68. Struelens B, Claes S, Bellemans J. Spacer-related problems in two-stage revision knee arthroplasty. Acta Orthop Belg. 2013;79(4):422–6.
  69. Lichstein P, Su S, Hedlund H, et al. Treatment of Periprosthetic Knee Infection With a Two-stage Protocol Using Static Spacers. Clin Orthop Relat Res. 2016;474(1):120–5. doi: 10.1007/s11999-015-4443-2
  70. Voleti PB, Baldwin KD, Lee GC. Use of static or articulating spacers for infection following total knee arthroplasty: a systematic literature review. J Bone Joint Surg Am. 2013;95(17):1594–9. doi: 10.2106/JBJS.L.01461
  71. Dzyuba GG, Reznik LB, Yerofeev SA, Odarchenko DI. Development of universal approaches to the treatment of osteomyelitis of the long bones of the skeleton based on supporting local antibacterial carriers. N.N. Priorov Journal of Traumatology and Orthopedics. 2016;(1):26–31. (In Russ.). doi: 10.17816/vto201623126-31
  72. Prokhorenko VM, Zlobin AV, Mammadov AA, Baitov VS. Treatment of paraprosthetic infection of the knee joint. Modern problems of science and education. 2015;(6). (In Russ.).
  73. Odarchenko DI. The use of local reinforcing antibacterial carriers in the treatment of chronic osteomyelitis of long tubular bones [dissertation]. Kurgan; 2013. 18 р. (In Russ.).
  74. Kurmangaliev E-DT. The use of original bone cement spacers manufactured during surgery to perform the first stage of a two-stage revision of a septic knee arthroplasty [dissertation]. Moscow; 2018. 117 р. (In Russ.).
  75. Sa Y, Yang F, Wang Y, Wolke JGC, Jansen JA. Modifications of Poly(Methyl Methacrylate) Cement for Application in Orthopedic Surgery. Adv Exp Med Biol. 2018;1078:119–134. doi: 10.1007/978-981-13-0950-2_7
  76. Giavaresi G, Bertazzoni Minelli E, Sartori M, et al. New PMMA-based composites for preparing spacer devices in prosthetic infections. J Mater Sci Mater Med. 2012;23(5):1247–57. doi: 10.1007/s10856-012-4585-7
  77. Breusch SJ, Kühn KD. Bone cements based on polymethylmethacrylate. Orthopade. 2003;32(1):41–50. (In German). doi: 10.1007/s00132-002-0411-0
  78. Chen L, Tang Y, Zhao K, et al. Fabrication of the anti-biotic-releasing gelatin/PMMA bone cement. Colloids SurfB Biointerfaces. 2019;183:110448.
  79. Tsiskarashvili AV, Melikova RE, Phakadze TYa, Artyukhov AA, Sokolova NV. In vitro study of antimicrobial activity of hydrogel-based matrices impregnated with antibiotics against leading microorganisms of orthopedic infection. Genij ortopedii. 2022;28(6):794–802. (In Russ.).
  80. Tian Y, Wu D, Wu D, et al. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Front Bioeng Biotechnol. 2022;10:899760. doi: 10.3389/fbioe.2022.899760
  81. Yang Y, Xu L, Wang J, et al. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym. 2022;283:119161. doi: 10.1016/j.carbpol.2022.119161
  82. Tan HL, Ao HY, Ma R, Lin WT, Tang TT. In vivo effect of quaternized chitosanloaded polymethylmethacrylate bone cement on methicillin-resistant Staphylococcus epidermidis infection of the tibial metaphysis in a rabbit model. Antimicrob Agents Chemother. 2014;58(10):6016–23. doi: 10.1128/AAC.03489-14
  83. Ho TC, Chang CC, Chan HP, et al. Hydrogels: Properties and Applications in Biomedicine. Molecules. 2022;27(9):2902. doi: 10.3390/molecules27092902
  84. Bezhin AI, Lipatov VA, Blatun LA, et al. Morphological evaluation of the effectiveness of the chitosan collagen complex with silver nanoparticles and chymotrypsin in the purulent-necrotic process in soft tissues. Wounds and wound infections. The journal named after prof. B.M. Kostyuchenka. 2019;6(4):14–21. (In Russ.).
  85. Tuleubaev BE, Saginova DA, Saginov AM, et al. Antibiotic impregnation of bone allograft: a microbiological comparative analysis. Novosti hirurgii. 2019;(5):489–495. (In Russ.).
  86. Logoluso N, Drago L, Gallazzi E, et al. CalciumBased, Antibiotic-Loaded Bone Substitute as an Implant Coating: A Pilot Clinical Study. J Bone Jt Infect. 2016;1:59–64. doi: 10.7150/jbji.17586
  87. Rahman N, Khan R, Badshah S. Effect of x-rays and gamma radiations on the bone mechanical properties: literature review. Cell Tissue Bank. 2018;19(4):457–472. doi: 10.1007/s10561-018-9736-8
  88. Man WY, Monni T, Jenkins R, Roberts P. Post-operative infection with fresh frozen allograft: reported outcomes of a hospital-based bone bank over 14 years. Cell Tissue Bank. 2016;17(2):269–75. doi: 10.1007/s10561-016-9547-8
  89. Soundrapandian C, Basu D, Sa B, Datta S. Local drug delivery system for the treatment of osteomyelitis: In vitro evaluation. Drug Dev Ind Pharm. 2011;37(5):538–46. doi: 10.3109/03639045.2010.528427
  90. Parent M, Magnaudeix A, Delebassée S, et al. Hydroxyapatite microporous bioceramics as vancomycin reservoir: Antibacterial efficiency and biocompatibility investigation. J Biomater Appl. 2016;31(4):488–498. doi: 10.1177/0885328216653108
  91. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224–247. doi: 10.1016/j.bioactmat.2017.05.007
  92. Cui Y, Liu H, Tian Y, et al. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio. 2022;16:100409. doi: 10.1016/j.mtbio.2022.100409
  93. Zhang X, Jia W, Gu Y, et al. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials. 2010;31:5865–74.
  94. Liu X, Xie Z, Zhang C, et al. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. J Mater Sci Mater Med. 2010;(2):575–582.
  95. Mulchandani N, Prasad A, Katiyar V. Resorbable polymersin bone repair and regeneration. Materials for biomedicalengineering. Romania: Elsevier; 2019. Р. 87–125.
  96. Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials. 2016;81:58–71. doi: 10.1016/J.BIOMATERIALS.2015.12.012
  97. Aghajanyan VV, Pronskikh AA, Demina VA, et al. Biodegradable implants in orthopedics and traumatology. Our first experience. Polytrauma. 2016;(4):85–93. (In Russ.).
  98. Bozhkova SA, Konev VA, Gordina EM., et al. Original polymer gels as a means of preventing implant-associated osteomyelitis in an experiment. Sibirskoe medicinskoe obozrenie. 2023;(3):34–42. (In Russ.).
  99. Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials. 2000;21(23):2405–12. doi: 10.1016/s0142-9612(00)00108-3
  100. Miyai T, Ito A, Tamazawa G, et al. Antibiotic-loaded poly-e-caprolactone and porousb-tricalcium phosphate com-posite for treating osteomyelitis. Biomaterials. 2008;29(3):350–358.
  101. Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells, Nanomedicine Biotechnol. 2018;46:1935–1947. doi: 10.1080/21691401.2017.1396997
  102. Beenken KE, Smith JK, Skinner R., et al. Chitosan Coating to Enhance the Therapeutic Efficacy of Calcium Sulfate-Based Antibiotic Therapy in the Treatment of Chronic Osteomyelitis. J Biomater Appl. 2014;29(4):514–523. doi: 10.1177/0885328214535452
  103. Wang Y, Garcia CR, Ding Z, et al. Adhesive, self-healing, and antibacterial chitosan hydrogels with tunable two-layer structures. ACS Sustainable Chemistry & Engineering. 2020;8(49):18006–18014.
  104. Xu H, Zhang L, Cai J. Injectable, self-healing, β-chitin-based hydrogels with excellent cytocompatibility, antibacterial activity, and potential as drug/cell carriers. ACS Applied Bio Materials. 2019;2(1):196–204. doi: 10.1021/acsabm.8b00548
  105. Li Y, Li G, Sha X, et al. An intelligent vancomycin release system for preventing surgical site infections of bone tissues. Biomater Sci. 2020;8:3202–3211. doi: 10.1039/d0bm00255k
  106. Melikova RE, Tsiskarashvili AV, Artyukhov AA, Sokolova NV. In vitro study of the dynamics of elution of antibacterial drugs impregnated into polymer hydrogel-based matrices. Genij ortopedii. 2023;29(1):64–70. (In Russ.). doi: 10.18019/1028-4427-2023-29-1-64-70
  107. Tsiskarashvili AV, Melikova RE, Phakadze TYa, Artyukhov AA, Sokolova NV. In vitro study of antimicrobial activity of hydrogel-based matrices impregnated with antibiotics against leading microorganisms of orthopedic infection. Genij ortopedii. 2022;28(6):794–802. (In Russ.). doi: 10.18019/1028-4427-2022-28-6-794-802
  108. Tsiskarashvili AV, Melikova RE, Volkov AV, et al. In vivo efficacy of polymer hydrogels impregnated with an antibacterial drug in chronic osteomyelitis. Genij ortopedii. 2023;29(5):535–545. (In Russ.). doi: 10.18019/1028-4427-2023-29-5-535-545
  109. Foster AL, Boot W, Stenger V, et al. Single-stage revision of MRSA orthopedic device-related infection in sheep with an antibiotic-loaded hydrogel. J Orthop Res. 2021;39(2):438–448. doi: 10.1002/jor.24949

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.