Results of microbiological monitoring of leading patients in infected fractures of long bones under conditions of external osteosynthesis



如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Background: The etiology of fracture-related infections (FRI) is caused by microbes, the spectrum of which can vary greatly in different clinics. The leading pathogens are usually Staphylococcus aureus and coagulase-negative staphylococci, to a lesser extent — Gram-negative microbes, anaerobes and fungi.

Aim: To identify the leading pathogens and their dynamics in patients with FRI of long bones treated with transosseous osteosynthesis in the period 2019–2024.

Materials and methods: The results of cultures of 247 patients with FRI and chronic osteomyelitis as its consequence, treated by the method of transosseous osteosynthesis in our department were retrospectively studied. The spectrum of leading pathogens and their dynamics by time periods were studied. Statistical data were processed by the Pearson χ2 criterion.

Results: Positive growth was obtained in 70.4% of patients, negative — in 29.6%. A total of 230 microorganisms were identified: gram-positive — 158 (68.7%), gram-negative — 71 (30.9%), fungi — 1 (0.4%). Monomicrobial infection was detected in 76.4% of cases, polymicrobial — in 23.6%. In 18.4% of observations, a change of microbes was noted: 15.5% — during treatment, 2.9% — during relapse.

Conclusion: Despite the increase in the proportion of MRSE, E. faecalis, Corynebacterium, K. pneumoniae and E. cloacae in the structure of FRI, the leading pathogen remains S. aureus.

全文:

受限制的访问

作者简介

Archil Tsiskarashvili

Federal State Budgetary Institution "National Medical Research Center of Traumatology and Orthopedics named after N.N. Priorov" of the Ministry of Health of the Russian Federation

Email: armed05@mail.ru
ORCID iD: 0000-0003-1721-282X
SPIN 代码: 2312-1002

Заведующий отделением последствий травм опорно-двигательной системы и гнойных осложнений № 5,
врач-травматолог-ортопед высшей квалификационной категории,
кандидат медицинских наук

俄罗斯联邦

Regina Melikova

Priorov Central Research Institute of Traumatology and Orthopedics

Email: regina-melikova@mail.ru
ORCID iD: 0000-0002-5283-7078
SPIN 代码: 8288-0256

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 10 Priorova str., 127299 Moscow

Anton Nazarenko

Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова, Москва, Россия

编辑信件的主要联系方式.
Email: nazarenkoag@cito-priorov.ru

参考

  1. Giannitsioti E, Salles MJ, Mavrogenis A, et al.; The Esgiai Collaborators Study Group. Osteosynthesis-associated infection of the lower limbs by multidrug-resistant and extensively drug-resistant Gram-negative bacteria: a multicentre cohort study. J Bone Jt Infect. 2022;7(6):279–288. doi: 10.5194/jbji-7-279-2022
  2. Rupp M, Walter N, Popp D, et al. Multidisciplinary Treatment of Fracture-Related Infection Has a Positive Impact on Clinical Outcome-A Retrospective Case Control Study at a Tertiary Referral Center. Antibiotics (Basel). 2023;12(2):230. doi: 10.3390/antibiotics12020230
  3. Metsemakers WJ, Kuehl R, Moriarty TF, et al. Infection after fracture fixation: Current surgical and microbiological concepts. Injury. 2018;49(3):511–522. doi: 10.1016/j.injury.2016.09.019
  4. Mthethwa PG, Marais LC. The microbiology of chronic osteomyelitis in a developing world setting. SA Orthopaedic Journal. 2017;16(2):39–45. doi: 10.17159/2309-8309/2017/v16n2a4
  5. Zhang Z, Liu P, Wang W, et al. Epidemiology and Drug Resistance of Fracture-Related Infection of the Long Bones of the Extremities: A Retrospective Study at the Largest Trauma Center in Southwest China. Front Microbiol. 2022;13:923735. doi: 10.3389/fmicb.2022.923735
  6. Baertl S, Walter N, Engelstaedter U, et al. What Is the Most Effective Empirical Antibiotic Treatment for Early, Delayed, and Late Fracture-Related Infections? Antibiotics (Basel). 2022;11(3):287. doi: 10.3390/antibiotics11030287
  7. Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM. Mechanisms of Immune Evasion and Bone Tissue Colonization That Make Staphylococcus aureus the Primary Pathogen in Osteomyelitis. Curr Osteoporos Rep. 2019;17(6):395–404. doi: 10.1007/s11914-019-00548-4
  8. Ren Y, Liu L, Sun D, et al. Epidemiological updates of post-traumatic related limb osteomyelitis in china: a 10 years multicentre cohort study. Int J Surg. 2023;109(9):2721–2731. doi: 10.1097/JS9.0000000000000502
  9. Graan D, Balogh ZJ. Microbiology of fracture related infections. J Orthop Surg (Hong Kong). 2022;30(3):10225536221118512. doi: 10.1177/10225536221118512
  10. Corrigan R, Sliepen J, Rentenaar RJ, et al. The effect of guideline-based antimicrobial therapy on the outcome of fracture-related infections (EAT ПАИ Study). J Infect. 2023;86(3):227–232. doi: 10.1016/j.jinf.2023.01.028
  11. Pliska NN. Pseudomonas Aeruginosa as the Main Causative Agent of Osteomyelitis and its Susceptibility to Antibiotics. Drug Res (Stuttg). 2020;70(6):280–285. doi: 10.1055/a-1150-2372
  12. Rupp M, Baertl S, Walter N, et al. Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Jt. Infection? A Retrospective Comparative Study. Antibiotics. 2021;10(8):921. doi: 10.3390/antibiotics10080921
  13. Young BC, Dudareva M, Vicentine MP, et al. Microbial Persistence, Replacement and Local Antimicrobial Therapy in Recurrent Bone and Joint Infection. Antibiotics (Basel). 2023;12(4):708. doi: 10.3390/antibiotics12040708
  14. Carbonell-Rosell C, Lakhani K, Lung M, et al. Etiology and antimicrobial resistance patterns in chronic osteomyelitis of the tibia: an 11-year clinical experience. Arch Orthop Trauma Surg. 2024;144(2):773–781. doi: 10.1007/s00402-023-05095-3
  15. Burnashov SI, Shipitsyna IV, Osipova EV. Microflora of surgical wounds and fistulas in patients with chronic osteomyelitis of the tibia before reconstructive treatment, in case of recurrence of infection. Clinical Laboratory Diagnostics. 2019;64(10):627–631. doi: 10.18821/0869-2084-2019-64-10-627-631 EDN: FONHNW
  16. Shipitsyna IV, Osipova EV. Role of anaerobic microflora in the etiology of chronic osteomyelitis. Clinical Laboratory Diagnostics. 2024;69(2):92–96. doi: 10.51620/0869-2084-2024-69-2-92-96 EDN: GVYMGO
  17. Shenoy PA, Vishwanath S, Bhat SN, Mukhopadhyay C, Chawla K. Microbiological profile of chronic osteomyelitis with special reference to anaerobic osteomyelitis in a tertiary care hospital of coastal Karnataka. Trop Doct. 2020;50(3):198–202. doi: 10.1177/0049475520921283
  18. Wang B, Xiao X, Zhang J, et al. Epidemiology and microbiology of fracture-related infection: a multicenter study in Northeast China. J Orthop Surg Res. 2021;16(1):490. doi: 10.1186/s13018-021-02629-6
  19. Patel KH, Gill LI, Tissingh EK, et al. Microbiological Profile of Fracture Related Infection at a UK Major Trauma Centre. Antibiotics (Basel). 2023;12(9):1358. doi: 10.3390/antibiotics12091358
  20. Depypere M, Morgenstern M, Kuehl R, et al. Pathogenesis and management of fracture-related infection. Clin Microbiol Infect. 2020;26(5):572–578. doi: 10.1016/j.cmi.2019.08.006
  21. Tsiskarashvili AV, Zhadin AV, Kuzmenkov KA, Bukhtin KM, Melikova RE. Biomechanically validated transosseus fixation in patients with femur pseudarthrosis complicated by chronic osteomyelitis. N.N. Priorov Journal of Traumatology and Orthopedics. 2018;(3–4):71–78. doi: 10.17116/vto201803-04171 EDN: XDXVSX
  22. Tsiskarashvili AV, Melikova RE, Zhadin AV, Kuzmenkov KA. Биомеханически обоснованный чрескостный остеосинтез в лечении переломов плечевой кости, осложненных хроническим остеомиелитом, и их последствий. N.N. Priorov Journal of Traumatology and Orthopedics. 2020;27(4):28–40. doi: 10.17816/vto57136 EDN: CWGWWM
  23. Determination of the sensitivity of microorganisms to antimicrobial drugs: recommendations: version 2021-01. Available from: antibiotic.ru›files/321/clrec-dsma2021.pdf (In Russ.).
  24. Vanvelk N, Van Lieshout EMM, Onsea J, et al. Diagnosis of fracture-related infection in patients without clinical confirmatory criteria: an international retrospective cohort study. J Bone Jt Infect. 2023;8(2):133–142. doi: 10.5194/jbji-8-133-2023
  25. Yang L, Feng J, Liu J, et al. Pathogen identification in 84 Patients with post-traumatic osteomyelitis after limb fractures. Ann Palliat Med. 2020;9(2):451–458. doi: 10.21037/apm.2020.03.29 Erratum in: Ann Palliat Med. 2020;9(3):1351. doi: 10.21037/apm-2020-04
  26. Sheehy SH, Atkins BA, Bejon P, et al. The microbiology of chronic osteomyelitis: prevalence of resistance to common empirical anti-microbial regimens. J Infect. 2010;60(5):338–43. doi: 10.1016/j.jinf.2010.03.006
  27. Vicenti G, Buono C, Albano F, et al. Early Management for Fracture-Related Infection: A Literature Review. Healthcare (Basel). 2024;12(13):1306. doi: 10.3390/healthcare12131306
  28. Hussain SA, Walters S, Ahluwalia AK, Trompeter A. Fracture-related infections. Br J Hosp Med (Lond). 2023;84(8):1–10. doi: 10.12968/hmed.2022.0545
  29. Peng J, Ren Y, He W, et al. Epidemiological, Clinical and Microbiological Characteristics of Patients with Post-Traumatic Osteomyelitis of Limb Fractures in Southwest China: A Hospital-Based Study. J Bone Jt Infect. 2017;2(3):149–153. doi: 10.7150/jbji.20002
  30. Kuehl R, Tschudin-Sutter S, Morgenstern M, et al. Time-dependent differences in management and microbiology of orthopaedic internal fixation-associated infections: An observational prospective study with 229 patients. Clin Microbiol Infect. 2019;25(1):76–81. doi: 10.1016/j.cmi.2018.03.040
  31. Dudareva M, Hotchen AJ, Ferguson J, et al. The microbiology of chronic osteomyelitis: Changes over ten years. J Infect. 2019;79(3):189–198. doi: 10.1016/j.jinf.2019.07.006
  32. Jorge LS, Fucuta PS, Oliveira MGL, et al. Outcomes and Risk Factors for Polymicrobial Posttraumatic Osteomyelitis. J Bone Jt Infect. 2018;3(1):20–26. doi: 10.7150/jbji.22566
  33. Rupp M, Walter N, Bärtl S, et al. Fracture-Related Infection-Epidemiology, Etiology, Diagnosis, Prevention, and Treatment. Dtsch Arztebl Int. 2024;121(1):17–24. doi: 10.3238/arztebl.m2023.0233
  34. Shipitsyna I, Osipova E, Leonchuk D, Sudnitsyn A. Monitoring of gram-negative bacteria and antibiotic resistance in osteomyelitis. Genij Ortopedii. 2020;26(4):544–547. doi: 10.18019/1028-4427-2020-26-4-544-547 EDN: EKBOTN
  35. Shipitsyna IV, Osipova EV. Analysis of the qualitative and quantitative community composition of bacteria isolated from the purulent focus in patients with chronic osteomyelitis over a three year period. Genij Ortopedii. 2022;28(6):788–793. doi: 10.18019/1028-4427-2022-28-6-788-793 EDN: DWFHDG
  36. Gitajn I, Werth P, O'Toole RV, et al. Microbial Interspecies Associations in Fracture-Related Infection. J Orthop Trauma. 2022;36(6):309–316. doi: 10.1097/BOT.0000000000002314
  37. Rosova LV, Godovykh NV. The microbiological study of purulent focus of inflammation in patients with chronic osteomyelitis of long bones. Clinical Laboratory Diagnostics. 2016;61(10):727–730. doi: 10.18821/0869-2084-2016-61-10-727-730 EDN: XBFRYT
  38. Tsiskarashvili AV, Gorbatyuk DS, Melikova RE, et al. Microbiological spectrum of causative agents of implant-associated infection in the treatment of complications of transpedicular fixation of the spine using the negative pressure method. Russian Journal of Spine Surgery. 2022;19(3):77–87. doi: 10.14531/ss2022.3.77-87 EDN: TGAPAP
  39. Urish KL, Cassat JE. Staphylococcus aureus Osteomyelitis: Bone, Bugs, and Surgery. Infect Immun. 2020;88(7):e00932–19. doi: 10.1128/IAI.00932-19
  40. Zhang K, Bai YZ, Liu C, et al. Composition of pathogenic microorganism in chronic osteomyelitis based on metagenomic sequencing and its application value in etiological diagnosis. BMC Microbiol. 2023;23(1):313. doi: 10.1186/s12866-023-03046-x
  41. He SY, Yu B, Jiang N. Current Concepts of Fracture-Related Infection. Int J Clin Pract. 2023;2023:4839701. doi: 10.1155/2023/4839701
  42. Onsea J, Van Lieshout EMM, Zalavras C, et al. Validation of the diagnostic criteria of the consensus definition of fracture-related infection. Injury. 2022;53(6):1867–1879. doi: 10.1016/j.injury.2022.03.024 Erratum in: Injury. 2023:S0020-1383(23)00273-5. doi: 10.1016/j.injury.2023.03.021
  43. Corrigan RA, Sliepen J, Dudareva M, et al. Causative Pathogens Do Not Differ between Early, Delayed or Late Fracture-Related Infections. Antibiotics (Basel). 2022;11(7):943. doi: 10.3390/antibiotics11070943
  44. Walter N, Baertl S, Engelstaedter U, et al. Letter in response to article in journal of infection: “The microbiology of chronic osteomyelitis: Changes over ten years”. J Infect. 2021;83(6):709–737. doi: 10.1016/j.jinf.2021.09.006
  45. Baertl S, Rupp M, Alt V. The DAIR-procedure in fracture-related infection-When and how. Injury. 2024;55 Suppl 6:111977. doi: 10.1016/j.injury.2024.111977

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.