О возможности применения инфракрасной термографии в в оценке состояния нижних конечностей



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Обоснование. Медицинская инфракрасная термография (МИТ) — метод регистрации тепловых излучений с поверхности тела человека, позволяющий на доклинической стадии выявить патологические состояния организма, а также в динамике отслеживать процесс лечения и реабилитации. К достоинствам данного метода можно отнести бесконтактность обследования, неинвазивность, безвредность, отсутствие необходимости в высокоспециализированном персонале и дорогостоящих расходных материалах.

Цель. Оценка состояния нижних конечностей с помощью медицинской инфракрасной термографии.

Материалы и методы. Настоящее исследование является экспериментальным, ослеплённым, одномоментным, выборочным, неконтролируемым, одноцентровым. Включались респонденты в возрасте 18–21 лет с отсутствием соматических заболеваний нижних конечностей в анамнезе. В ходе исследования были выполнены термографические снимки передней и задней поверхностей обеих нижних конечностей, после чего на каждом из них были выставлены точки, показывающие температуру заданных областей. Данные точки были выбраны согласно анатомическому расположению сосудов нижних конечностей. Основным исходом являются средние значения процентного изменения температуры, дополнительным — выявление зависимости между процентным изменением температуры и объёмом подкожно-жировой клетчатки. Время проведения исследования составило 2,5 месяца. Для расчёта статистической значимости исследования использовался критерий хи-квадрат.

Результаты. При проведении данного исследования было выявлено, что физиологический феномен снижения температуры на нижних конечностях от проксимальных отделов к дистальным может применяться в практической деятельности (p <0,001). Построенные в ходе работы графики доказали отсутствие зависимости величины процентного изменения температуры от состояния подкожно-жировой клетчатки, что отличается от температуры анатомических точек, значения которой полностью зависят от объёма жирового слоя у человека.

Заключение. Представленное исследование является первой ступенью на пути к использованию среднестатистических данных о процентном изменении температуры между анатомическими точками на нижних конечностях в практической деятельности. С помощью измерений, расчётов и построения графиков было доказано, что подобный способ проведения термографического обследования универсален для лиц с разной комплекцией и индексом массы тела, что сильно упростит его применение в диагностике врачами разных специальностей.

Полный текст

Доступ закрыт

Об авторах

Артем Михайлович Морозов

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный медицинский университет» Минздрава России

Email: ammorozovv@gmail.com
ORCID iD: 0000-0003-4213-5379
SPIN-код: 6815-9332

к.м.н., доцент, доцент кафедры общей хирургии

Россия, 170100, Россия, Тверь, ул. Советская, д. 4.

Алексей Николаевич Сергеев

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный медицинский университет» Минздрава России

Email: dr.nikolaevich@mail.ru
ORCID iD: 0000-0002-9657-8063
SPIN-код: 8817-0158

д.м.н., доцент, заведующий кафедрой общей хирургии

Россия, 170100, Россия, Тверь, ул. Советская, д. 4.

Ксения Дмитриевна Егорова

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный медицинский университет» Минздрава России

Email: e9orow4ksen@yandex.ru
ORCID iD: 0009-0002-4855-3555
SPIN-код: 4755-3884

студент

170100, Россия, Тверь, ул. Советская, д. 4.

Арина Сергеевна Бурлакова

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный медицинский университет» Минздрава России

Автор, ответственный за переписку.
Email: aisha_77_07@mail.ru
ORCID iD: 0009-0004-6854-8926
SPIN-код: 8649-1032

студент

170100, Россия, Тверь, ул. Советская, д. 4.

Список литературы

  1. Morozov AM, Mokhov EM, Kadykov VA, et al. Medical thermography: capabilities and perspectives. Kazan Medical Journal. 2018;99(2):264–270. doi: 10.17816/KMJ2018-264 EDN: YVEYPG
  2. Konov PA, Chushkin NA, Zheleznov NA. Thermal radiation. The laws of thermal radiation. The influence of thermal radiation on human health. Proceedings of Tula State University. Technical sciences. 2023;(9):213–218. doi: 10.24412/2071-6168-2023-9-213-214 EDN: BSNHLC
  3. Ivanov AP. Distribution of IR radiation from a non-local source inside the biological tissue. Proceedings of the National Academy of Sciences of Belarus Physics and Mathematics Series. 2018;54(3):316–325. doi: 10.29235/1561-2430-2018-54-3-316-325 EDN: YNMDUL
  4. Morozov AM, Zhukov SV, Sorokovikova TV, et al. Medical thermovision: possibilities and prospects of the method. Medical Council. 2022;16(6):256–263. doi: 10.21518/2079-701X-2022-16-6-256-263 EDN: QZSAKC
  5. Kozhevnikova IS, Pankov MN, Gribanov AV, et al. The use of infrared thermography in modern medicine (Literature Review). Human Ecology. 2017;(2):39–46. doi: 10.33396/1728-0869-2017-2-39-46 EDN: LYIZMT
  6. Sushkov AI, Maltseva AP, Rudakov VS, Gubarev KK, Voskanyan SE. The use of infrared thermography in or-gan donation and transplantation: state of the issue and own results. Clinical and Experimental Surgery. Petrovsky Journal. 2021;9(2):96–107. doi: 10.33029/2308-1198-2021-9-2-96-107 EDN: LXZZSD
  7. Khizhnyak LN, Khizhnyak EP, Mayevsky EP. The possibility of using miniature infrared cameras a new generation for medical diagnostics. Journal of New Medical Technologies. 2018;25(4):101–109. doi: 10.24411/1609-2163-2018-16279 EDN: YRWKPR
  8. Sergeev AN, Morozov AM, Charyev YuO, et al. On the possibility of using medical thermography in clinical practice. Russian Journal of Preventive Medicine. 2022;25(4):82–88. doi: 10.17116/profmed20222504182 EDN: ENVGDT
  9. Khizhnyak EP, Khizhnyak LN, Maevsky EI, et al. Possibilities of detection of the patients using a thermography. Challenges and prospects. Journal of New Medical Technologies. 2020;27(4):110–114. doi: 10.24411/1609-2163-2020-16775 EDN: KGMWRV
  10. Dolgov IM, Volovik MG, Zheleznyak IS, et al. Possibilities of medical thermal imaging in the organization of primary health care. The Medical alphabet. 2023;(7):42–50. doi: 10.33667/2078-5631-2023-7-42-50 EDN: ILOQWI
  11. Belash VO. The possibilities of using local thermometry to objectify the effect of osteopathic correction in patients with dorsopathy at the cervicothoracic level. Russian Osteopathic Journal. 2018;(3–4):25–32. doi: 10.32885/2220-0975-2018-3-4-25-32 EDN: YSGAIH
  12. Schiavon G, Capone G, Frize M, et al. Infrared Thermography for the Evaluation of Inflammatory and Degenerative Joint Diseases: A Systematic Review. Cartilage. 2021;13(2):1790–1801. doi: 10.1177/19476035211063862
  13. Zagorodniy NV, Vorotnikov AA, Airapetov GA, et al. Experimental and clinical aspects of combined method of replacement osteochondral defects of the knee. N.N. Priorov Journal of Traumatology and Orthopedics. 2019;(2):24–31. doi: 10.17116/vto201902124 EDN: FHZIRG.
  14. Tsiskarashvili AV, Rodionova SS, Mironov SP, et al. Dynamics of bone tissue metabolism in the complex treatment of chronic posttraumatic osteomyelitis of long bones. N.N. Priorov Journal of Traumatology and Orthopedics. 2020;27(4):53–64. doi: 10.17816/vto52895 EDN: QJZZYS
  15. Mironov SP, Eskin NA, Andreeva TM, et al. Dynamics of traumatism in adult population of the Russian Federation. N.N. Priorov Journal of Traumatology and Orthopedics. 2019;(3):5–13. doi: 10.17116/vto20190315 EDN: DDICJV
  16. Solod EI, Lazarev AF, Petrovskiy RA, et al. Clinical experience in the treatment of fragility pelvic fractures. N.N. Priorov Journal of Traumatology and Orthopedics. 2019;(4):5–11. doi: 10.17116/vto20190415 EDN: TUMKNF
  17. Kolyshnitsyn NYu, Mokhov DE, Smirnova LM, et al. Application of infrared thermography in the study of the osteopathic correction results in patients with amputation defects of the lower extremities. Russian Osteopathic Journal. 2022;(4):70–82. doi: 10.32885/2220-0975-2022-4-70-82 EDN: XAZQNS
  18. Davydkin VI, Ippolitov IYu, Kistkin AI, et al. Clinical results of treating patients with compound lower leg fractures. Ulyanovsk Medico-Biological Journal. 2021;(1):92–97. doi: 10.34014/2227-1848-2021-1-92-97 EDN: YQORUQ
  19. Podkosov OD, Kalinsky EB, Goncharuk YuR, et al. Treatment of severe multiple soft tissue injuries of the limbs: a case report. Department of Traumatology and Orthopedics. 2018;(4):37–43. doi: 10.17238/issn2226-2016.2018.4.37-43 EDN: LMYOMI
  20. Samartsev VA, Kadyntsev IV, Voluzhenkov EG. Postoperative extremity metallosteosynthesis complications. Perm Medical Journal. 2018;35(3):5–8. doi: 10.17816/pmj3535-8 EDN: OVBFHB
  21. Solod EI, Zagorodniy NV, Lazarev AF, et al. Surgical treatment and rehabilitation capabilities of patients with patellar fractures. N.N. Priorov Journal of Traumatology and Orthopedics. 2019;(1):11–16. doi: 10.17116/vto201901111 EDN: NLAMCK
  22. Kokorina ML, Alyoshenkova PV, Drevaleva YuA, et al. Ways to enhance bone regeneration in traumatology. Trends in the development of science and education. 2024;(109–10):80–85. doi: 10.18411/trnio-05-2024-520 EDN: DBQTER
  23. Yarovenko GV. Diagnostic possibilities of thermal imaging of trophic ulcers. Regional blood circulation and microcirculation. 2020;19(2):38–42. doi: 10.24884/1682-6655-2020-19-2-38-42 EDN: UYASPB
  24. Andreeva VV, Kuzmin EN, Raznitsyna IA. Experience of using optical diagnostics methods to determine the type of cicatricial deformity. Issues of Reconstructive and Plastic Surgery. 2019;22(3):33–40. doi: 10.17223/1814147/70/05 EDN: NQLDUU
  25. Yarovenko GV, Novozhilov AV. Thermographic examination of patients with pathology of the upper limbs arteries. Regional blood circulation and microcirculation. 2018;17(4):46–50. doi: 10.24884/1682-6655-2018-17-4-46-50 EDN: VUSDMK
  26. Khizhnyak EP, Khizhnyak LN, Maevsky EI. Earlier detection of allergic reactions using high-resolution digital infrared thermography. Journal of New Medical Technologies. 2019;26(4):152–156. doi: 10.24411/1609-2163-2019-16589 EDN: WWSIZT
  27. Karamyshev YV, Dolgov IM, Zheleznyak IS, et al. Possibilities of infrared medical thermography in the differential diagnosis of pneumonia caused by the SARS-CoV-2 virus and community-acquired pneumonia. Medical Alphabet. 2022;(33):40–46. doi: 10.33667/2078-5631-2022-33-40-46 EDN: XXYMBR
  28. Lui Q, Li M, Wang W, et al. Infrared thermography in clinical practice: a literature review. Eur J Med Res. 2025;30(1):33. doi: 10.1186/s40001-025-02278-z
  29. Salamunes ACC, Stadnik AMW, Neves EB. The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography. J Therm Biol. 2017;66:1–9. doi: 10.1016/j.jtherbio.2017.03.006
  30. Azimov A, Azimov M. Thermography of healthy faces. Journal of oral medicine and craniofacial research. 2022;(1):72–74. doi: 10.26739.2181-0966-2020-2-15
  31. Romantsova TI. Adipose tissue: colors, depots and functions. Obesity and metabolism. 2021;18(3):282–301. doi: 10.14341/omet12748 EDN: YDBBNE
  32. Petrov AI, Razuvaeva MV. Effect of temperature on metabolism and lifespan in several homeothermic animals. Technical physics. 2018;88(10):1457–1461. doi: 10.21883/JTF.2018.10.46485.3-18 EDN: YWBRBB
  33. Nikitina EA, Orlova SV, Batysheva TT, et al. Stress and Metabolism: The Role of Individual Micronutrients in Correcting Disorders. The Medical alphabet. 2024;(16):31–38. doi: 10.33667/2078-5631-2024-16-31-38 EDN: LGIKWX
  34. Levin ML, Makhaniok AA. The effect of age of the patient at whole-body gas cryotherapy. Scientific journal NRU ITMO. Series: Refrigeration and Air Conditioning. 2017;(1):8–14. doi: 10.17586/2310-1148-2017-10-1-8-14 EDN: WUXDQB
  35. Shirkavand A, Nazif HR. Numerical study on the effects of blood perfusion and body metabolism on the temperature profile of human forearm in hyperthermia conditions. J Therm Biol. 2019;(84):339–350. doi: 10.1016/j.jtherbio.2019.07.023
  36. Erlikh VV, Merkasimova OS, Cherepova IV, et al. Thermography measurements of temperature response to different physical activities. Human. Sport. Medicine. 2022;22(3):80–90. doi: 10.14529/hsm220310 EDN: WUWUIU
  37. Baytinger VF, Selianinov KV. Microvasculature in reperfused flaps: modern possibilities for the correction of hemodynamic disorders (part I). Issues of Reconstructive and Plastic Surgery. 2020;23(2):29–40. doi: 10.17223/1814147/73/04 EDN: XLEDRQ.
  38. Pavlova TV, Shkatulova DM. Infrared Thermography in the Diagnosis of Pathological Changes in the Breast (Literature Review). Radiology — Practice. 2021;(3):70–76. doi: 10.52560/2713-0118-2021-3-70-76 EDN: ERHHCF
  39. Velichko MN, Shturmin AV, Terskov AY, et al. The use of infrared thermography in rehabilitation after anterior cruciate ligament surgery. Medical alphabet. 2023;(32):50–53. doi: 10.33667/2078-5631-2023-32-50-53 EDN: OUPUCN

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.