EXPERIMENTAL RESEARCH ON FIXATION PROPERTIES OF EXTERNAL OSTEOSYNTHESIS DIFFERENT BIOMECHANICAL OPTIONS IN TREATING THE TIBIAL PLATEAU SPLIT FRACTUREAUTHORS



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: In surgical practice there are various biomechanical options of bone and cartilage fragments fixation, such as resting on bone transplant by means of subchondral wires reinforcement, or applying osteosynthesis based both on fork-like fixators and special plates, with the bolts installed just under the joint surface fragments. The authors take advantage of subchondral strained reinforcement method.

AIM: To compare fixation properties of osteosynthesis different biomechanical options in treating split intra-articular fractures, basing on the models made of porcine tibia.

MATERIALS AND METHODS: An unblinded single-center indented study was conducted. The research object included two types of models characterised by the similar fractures, bone defects and non-strained wires reinforcement. Model A got bone defects filled with transplant, while Model B — did not. There were also analysed the results of osteosynthesis (Models A and B): 1) osteosynthesis by means of external plate with the joint surface resting on the bone transplant, option A-I; 2) osteosynthesis by means of the external plate with the joint surface resting on both the external plate fixation elements and the bone transplant, option A-II; 3) osteosynthesis by means of the external plate with joint surface splits fixed with the help of П-shaped strained wires, option B-III; 4) osteosynthesis by means of the joint surface fixation with the help of strained subchondral wires in the  module external fixing device, option B-IV. The given research was conducted on porcine tibia proximal metaepiphysis, basing on the method of static indentation.

RESULTS: The authors observed options B-III and B-IV demonstrate more effective fixation properties of strained subchondral reinforcement in comparison with non-strained wires reinforcement (Model A). Among four biomechanical options, the options with strained subchondral reinforcement, B-III and B-IV, demonstrated the best strength properties. Option A-II analysis showed worse resistance properties against the vertical load, compared to those in options B-III and B-IV. Option A-I proved to have the poorest results of all.

CONCLUSIONS: The authors assumed that the option with strained subchondral reinforcement with the help of П-shaped wires (B-III) and the one using the module external fixing device (B-IV) without additional support in the form of the bone autotransplant, demonstrated the best efficiency.

Full Text

Restricted Access

About the authors

Mikhail Kupitman

ФГБОУ ВО ЮУГМУ Минздрава России

Author for correspondence.
Email: mihkup74@gmail.com

к.м.н, доцент кафедры травматологии и ортопедии

Russian Federation

Igor' Aleksandrovich Atmanskiy

Южно-уральский государственный медицинский университет Минздрава России

Email: atmanskiy@gmail.com

Anastasia V. Ignatova

Email: ignatovaav@susu.ru

References

  1. Gilev МV, Volokitina ЕA, Antoniadi YV, Chernitcyn DN. Management of partial- and intraarticular fractures of proximal tibia’s segment. Ural Medical Journal. 2012;98(6):121–126. EDN: PFJLYF
  2. Voronkevich IA. Urgent osteosynthesis of tibial condylar fractures using plates of domestic production. Traumatology and Orthopedics of Russia. 2010;17(1):87–91. EDN: OIKABL
  3. Lee AK, Cooper SA, Collinge C. Bicondylar Tibial Plateau Fractures: A Critical Analysis Review. JBJS Reviews. 2018;6(2):e4. doi: 10.2106/jbjs.rvw.17.00050
  4. Voronkevich IA. New Methods of Bone Plastic Surgery in Osteosynthesis of Tibial Condyle Fractures. Traumatology and Orthopedics of Russia. 2008;(4):78–84. (In Russ.) EDN: KWLKRJ
  5. van de Pol GJ, Iselin LD, Callary SA, et al. Impaction bone grafting has potential as an adjunct to the surgical stabilisation of osteoporotic tibial plateau fractures: Early results of a case series. Injury. 2015;46(6):1089–1096. doi: 10.1016/j.injury.2015.02.019
  6. Kupitman ME, Atmansky IA. Criteria for choosing between pre-stressed reinforcement of articular bone surfaces using standard and modular bone fixators in clinical practice. In: Collection of abstracts of the International Conference “Trauma 2018: Multidisciplinary Approach”; November 02–03, 2018; Moscow. Moscow: Publishing and Polygraphic Center “Nauchnaya Kniga”; 2018. Р. 162–163. (In Russ.) EDN: YULLPV
  7. Pires RES, Giordano V, Wajnsztejn A, et al. Complications and outcomes of the transfibular approach for posterolateral fractures of the tibial plateau. Injury. 2016;47(10):2320–2325. doi: 10.1016/j.injury.2016.07.010
  8. Patent RUS № 2555108/ 10.07.15. Byul. № 19. Kupitman ME, Atmanskij IA. Method for subchondral strained reinforcement. Available from: https://yandex.ru/patents/doc/RU2555108C2_20150710 (In Russ.) EDN: UXZMSS
  9. Patent RUS № 2605497/ 20.12.16. Byul. № 35. Kupitman ME, Atmanskij IA. External holding system. Available from: https://patents.google.com/patent/RU2605497C2/ru (In Russ.) EDN: AQGJDC
  10. Kupitman ME, Kurguzov SA, Atmanskiy IA, Rusanov VA. Theoretical and practical validation for reinforcing fractures of bones articular surfaces with prestressed constructions. Modern Problems of Science and Education. 2014;(3). Available from: https://science-education.ru/ru/article/view?id=13327. Accessed: July 9, 2025. (In Russ.) EDN: SYZQTH
  11. Malyshev EE, Thormodsson HS, Korolyov SB, et al. Osteochondral Autoplasty of the Extensive Post-Traumatic Defect of the Proximal Tibia. Modern Technologies in Medicine. 2014;6(2):142–147. EDN: SFPTRZ
  12. Korobeinikov AA, Pervuninskaya JuE, Popkov DA. Results of stand biomechanical studies of angular stability of the flexible intramedullary nailing. Advances in Current Natural Sciences. 2015;(1 Pt 8):1273–1277. EDN: UHXTCX
  13. Zeng Z-M, Luo C-F, Putnis S, Zeng B-F. Biomechanical analysis of posteromedial tibial plateau split fracture fixation. The Knee. 2011;18(1):51–54. doi: 10.1016/j.knee.2010.01.006
  14. Ren W, Zhang W, Jiang S, et al. The Study of Biomechanics and Clinical Anatomy on a Novel Plate Designed for Posterolateral Tibial Plateau Fractures via Anterolateral Approach. Front Bioeng Biotechnol. 2022;10:818610. [cited 2024 Sept 17]. Available from: https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.818610/full doi: 10.3389/fbioe.2022.818610
  15. Zagorodnii NV, Ivashkin AN, Panin MA, et al. Management of surgical treatment of proximal ulna comminuted fractures. Biomechanical study. Modern Science: actual problems of theory and practice. 2017;(2):60–64. EDN: YIZUNJ
  16. Minasov TB, Scriabin VL, Sotin AV, et al. The mechanical properties of the system bone–implant systems. Russian Journal of Biomechanics. 2020;24(3):364–369. doi: 10.15593/RZhBiomeh/2020.3.08 EDN: VSGFBI
  17. Ali AM, Saleh M, Bolongaro S, Yang L. Experimental model of tibial plateau fracture for biomechanical testing. J Biomech. 2006;39(7):1355–1360. doi: 10.1016/j.jbiomech.2005.03.022
  18. Shayko-Shaykovsky AG, Dudko AG, Bilyk GA, et al. Methodology for Modeling and Experimental Research of the Stress-Strain State of Femoral Bone Samples. In: Proceedings of the International Symposium “Reliability and Quality”; May 22–31, 2017; Penza. Penza: Penza State University; 2017. Vol. 1. P. 96–98. (In Russ.) EDN: ZDGQOP
  19. Rebrov VN, Gavryushenko NS, Malygina MA, Plotnikov SYu. Study of strength characteristic of distal radius metaepiphysis and systems “bone-fixative”. N.N. Priorov Journal of Traumatology and Orthopedics. 2008;(2):57–60. EDN: JTGGBX

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.