Review of contemporary robotic systems used in total knee arthroplasty



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Recent advances in orthopedic technologies have significantly increased surgeons’ interest in robotic systems used for total knee arthroplasty. The use of robotic platforms in routine clinical practice enhances the precision of implant component positioning, improves soft tissue balance, and potentially shortens postoperative recovery time. This work aimed to provide a comparative overview of modern robotic systems utilized in primary total knee arthroplasty. A systematic search of scientific data was conducted in the PubMed, Scopus, ResearchGate, and eLIBRARY databases using relevant keywords in both Russian and English. The review includes randomized and non-randomized studies, meta-analyses, narrative reviews, and systematic reviews published over the past five years. Active and semi-active systems are identified and described in detail, along with their operating mechanisms, features of preoperative planning (image-based vs image-less), and differences between open and closed platforms. Comparative characteristics of the most widely used systems—ROSA, MAKO, VELYS, CORI, and Cuvis Joint—are presented, highlighting their advantages and limitations according to our opinion. The analysis demonstrates that none of the systems is universal; each has its own strengths and weaknesses, and the choice depends on the surgeon’s preferences, the team’s experience, and the capabilities of the medical institution. Despite the high cost of equipment and the need for specialized training, robotic technologies continue to develop rapidly and are being increasingly adopted in orthopedic surgery, including in Russia, underscoring their potential to improve treatment outcomes for patients with gonarthrosis.

Full Text

Restricted Access

About the authors

Georgii A. Airapetov

Peoples’ Friendship University of Russia named after Patrice Lumumba; City Clinical Hospital № 31 of the Moscow Health Department

Email: airapetovga@yandex.ru
ORCID iD: 0000-0001-7507-7772
SPIN-code: 7333-6640

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; Moscow

Nikolay V. Zagorodny

Peoples’ Friendship University of Russia named after Patrice Lumumba; Priorov National Medical Research Centre of Traumatology and Orthopaedics

Email: zagorodniy51@mail.ru
ORCID iD: 0000-0002-6736-9772
SPIN-code: 6889-8166

MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences

Russian Federation, Moscow, Moscow

Armen A. Daniliyants

Peoples’ Friendship University of Russia named after Patrice Lumumba; City Clinical Hospital № 31 of the Moscow Health Department

Author for correspondence.
Email: armendts@mail.ru
ORCID iD: 0000-0001-6692-0975
SPIN-code: 9880-2555
Russian Federation, Moscow; Moscow

Sergey V. Bezverkhiy

City Clinical Hospital № 31 of the Moscow Health Department

Email: dr.bezverkhiy@me.com
ORCID iD: 0000-0002-2316-5241
SPIN-code: 2952-7527

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Vadim F. Naidanov

City Clinical Hospital № 31 of the Moscow Health Department

Email: adimfn@yandex.ru
ORCID iD: 0009-0009-4361-6482
SPIN-code: 3684-8349
Russian Federation, Moscow

Ivan A. Dmitrov

City Clinical Hospital № 31 of the Moscow Health Department

Email: dr.dmitrov@gmail.com
ORCID iD: 0000-0001-7051-0848
SPIN-code: 2938-4587

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Anjum H.A. Al Kafavin

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: anjum.hasan@mail.ru
ORCID iD: 0009-0005-7329-4446
Russian Federation, Moscow

Dmitry A. Samkovich

Peoples’ Friendship University of Russia named after Patrice Lumumba; City Clinical Hospital № 31 of the Moscow Health Department

Email: dmitry.samkovitch@gmail.com
ORCID iD: 0000-0001-5770-7304
Russian Federation, Moscow; Moscow

References

  1. Shao W, Hou H, Han Q, et al. Prevalence and risk factors of knee osteoarthritis: a cross-sectional survey in Nanjing, China. Front Public Health. 2024;12:1441408. doi: 10.3389/fpubh.2024.1441408
  2. Pires DPC, Monte FAD, Monteiro LF, et al. Updates in the treatment of knee osteoarthritis. Rev Bras Ortop (Sao Paulo). 2024;59(3):e337–e348. doi: 10.1055/s-0044-1786351
  3. Somaiya KJ, Samal S, Boob MA. Physiotherapeutic intervention techniques for knee osteoarthritis: a systematic review. Cureus. 2024;16(3):e56817. doi: 10.7759/cureus.56817
  4. Marsh M, Newman S. Trends and developments in hip and knee arthroplasty technology. J Rehabil Assist Technol Eng. 2021;8:2055668320952043. doi: 10.1177/2055668320952043
  5. Dmitrov IA, Zakharyan NG, Bezverkhiy SV, et al. Arteriovenous fistula as a complication after total knee joint replacement. Polytrauma. 2019;(3):77–82. EDN: SXSDWD
  6. Parisi FR, Zampogna B, Zampoli A, et al. Planning accuracy and stem offset assessment in digital two-dimensional versus three-dimensional planning in cementless hip arthroplasty: a systematic review and meta-analysis. J Clin Med. 2024;13(21):6566. doi: 10.3390/jcm13216566
  7. Rodriguez-Merchan EC. Patient satisfaction following primary total knee arthroplasty: contributing factors. Arch Bone Joint Surg. 2021;9(4):379–386. doi: 10.22038/ABJS.2020.46395.2274
  8. Gardner J, Roman ER, Bhimani R, et al. Aetiology of patient dissatisfaction following primary total knee arthroplasty in the era of robotic-assisted technology. Bone Jt Open. 2024;5(9):758–765. doi: 10.1302/2633-1462.59.BJO-2024-0099.R1
  9. Selvanathan N, Ayeni FE, Sorial R. Is 80% satisfaction still the expectation in modern TKA mechanically aligned with robot assist? We think not. J Robot Surg. 2024;18(1):137. doi: 10.1007/s11701-024-01888-9
  10. Nagarkatti A, Strecker S, Nagarkatti D, et al. The role of imageless computer-assisted navigation during total knee arthroplasty on femoral component sagittal alignment and outcomes. Arthroplast Today. 2024;28:101455. doi: 10.1016/j.artd.2024.101455
  11. Mancino F, Rossi SMP, Sangaletti R, et al. Increased accuracy in component positioning using an image-less robotic arm system in primary total knee arthroplasty: a retrospective study. Arch Orthop Trauma Surg. 2024;144(1):393–404. doi: 10.1007/s00402-023-05062-y
  12. Li XX, Cao F, Zhao CN, et al. Global burden of osteoarthritis: prevalence and temporal trends from 1990 to 2019. Int J Rheum Dis. 2024;27(8):e15285. doi: 10.1111/1756-185X.15285
  13. McAuliffe M, Darwish I, Anderson J, et al. Association of technology usage and decreased revision TKA rates for low-volume surgeons using an optimal prosthesis combination: an analysis of 53 264 primary TKAs. J Bone Joint Surg Am. 2024;106(22):2063–2072. doi: 10.2106/JBJS.24.00539
  14. Webb ML, Hutchison CE, Sloan M, et al. Reduced postoperative morbidity in computer-navigated total knee arthroplasty: a retrospective comparison of 225 123 cases. Knee. 2021;30:148–156. doi: 10.1016/j.knee.2020.12.015
  15. Tsukada S, Ogawa H, Nishino M, et al. Augmented reality-assisted femoral bone resection in total knee arthroplasty. JB JS Open Access. 2021;6(3):e21.00001. doi: 10.2106/JBJS.OA.21.00001
  16. Lakhotia D, Agrawal U, Singh SP. A prospective randomized study on whether computer navigation is better than conventional total knee replacement in terms of short-term functional and clinical outcomes. Cureus. 2024;16(1):e53226. doi: 10.7759/cureus.53226
  17. Patrick NJ, Man LLC, Wai-Wang C, et al. No difference in long-term functional outcomes or survivorship after total knee arthroplasty with or without computer navigation: a 17-year survivorship analysis. Knee Surg Relat Res. 2021;33(1):30. doi: 10.1186/s43019-021-00114-2
  18. Shah SM. After 25 years of computer-navigated total knee arthroplasty, where do we stand today? Arthroplasty. 2021;3(1):41. doi: 10.1186/s42836-021-00100-9
  19. Mathew KK, Marchand KB, Tarazi JM, et al. Computer-assisted navigation in total knee arthroplasty. Surg Technol Int. 2020;36:323–330.
  20. Gothesen O, Skaden O, Dyrhovden GS, et al. Computerized navigation: a useful tool in total knee replacement. JBJS Essent Surg Tech. 2020;10(2):e0022. doi: 10.2106/JBJS.ST.19.00022
  21. Roheet SSV, Kannan A. Does robotic assistance help with bone preservation in total knee replacement? Indian J Orthop. 2024;58(8):1098–1102. doi: 10.1007/s43465-024-01126-2
  22. Daoub A, Qayum K, Patel R, et al. Robotic assisted versus conventional total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Robot Surg. 2024;18(1):364. doi: 10.1007/s11701-024-02048-9
  23. Airapetov GA, Yablonskiy PK, Serdobintsev MS, Dziov ZV, Naumov DG. Robot-assisted knee arthroplasty: first experience (a prospective randomized study). Orthopaedic Genius. 2023;29(5):475–480. doi: 10.18019/1028-4427-2023-29-5-475-480 EDN: PXAFKP
  24. Han S, Rodriguez-Quintana D, Freedhand AM, et al. Contemporary robotic systems in total knee arthroplasty: a review of accuracy and outcomes. Orthop Clin North Am. 2021;52(2):83–92. doi: 10.1016/j.ocl.2020.12.001
  25. Weiner TR, Ferreri ED, Sarpong NO, et al. Robotic total knee arthroplasty is associated with earlier return of postoperative range of motion. Surg Technol Int. 2023;43:197–201. doi: 10.52198/23.STI.43.OS1724
  26. Siddiqi A, Horan T, Molloy RM, et al. A clinical review of robotic navigation in total knee arthroplasty: historical systems to modern design. EFORT Open Rev. 2021;6(4):252–269. doi: 10.1302/2058-5241.6.200071
  27. Balaguer-Castro M, Torner P, Jornet-Gibert M, et al. Current situation of robotics in knee prosthetic surgery: a technology that has come to stay? Rev Esp Cir Ortop Traumatol. 2023;67(4):334–341. doi: 10.1016/j.recot.2023.02.012
  28. Shichman I, Rajahraman V, Chow J, et al. Clinical, radiographic, and patient-reported outcomes associated with a handheld image-free robotic-assisted surgical system in total knee arthroplasty. Orthop Clin North Am. 2023;54(2):141–151. doi: 10.1016/j.ocl.2022.11.009
  29. Buchan G, Ong C, Hecht C, et al. Equivalent radiation exposure with robotic total hip replacement using a novel, fluoroscopic-guided (CT-free) system: case-control study versus manual technique. J Robot Surg. 2023;17(4):1561–1567. doi: 10.1007/s11701-023-01554-6
  30. Hasegawa M, Tone S, Naito Y, et al. Comparison of accuracy and early outcomes in robotic total knee arthroplasty using NAVIO and ROSA. Sci Rep. 2024;14(1):3192. doi: 10.1038/s41598-024-53789-4
  31. Zhou G, Wang X, Geng X, et al. Comparison of alignment accuracy and clinical outcomes between a CT-based, saw cutting robotic system and a CT-free, jig-guided robotic system for total knee arthroplasty. Orthop Surg. 2024;16(5):1168–1174. doi: 10.1111/os.14055
  32. Demirtas Y, Emet A, Ayik G, et al. A novel robot-assisted knee arthroplasty system (ROSA) and 1-year outcome: a single center experience. Medicine (Baltimore). 2023;102(42):e35710. doi: 10.1097/MD.0000000000035710
  33. Gamie Z, Paparoidamis G, Milonakis N, et al. The ROSA knee robotic system demonstrates superior precision in restoring joint line height and posterior condylar offset compared to conventional manual TKA: a retrospective case-control study. Eur J Orthop Surg Traumatol. 2024;34(5):2449–2455. doi: 10.1007/s00590-024-03942-6
  34. Rossi SMP, Sangaletti R, Perticarini L, et al. High accuracy of a new robotically assisted technique for total knee arthroplasty: an in vivo study. Knee Surg Sports Traumatol Arthrosc. 2023;31(3):1153–1161. doi: 10.1007/s00167-021-06800-8
  35. Kenanidis E, Boutos P, Sitsiani O, et al. The learning curve to ROSA: cases needed to match the surgery time between a robotic-assisted and a manual primary total knee arthroplasty. Eur J Orthop Surg Traumatol. 2023;33(8):3357–3363. doi: 10.1007/s00590-023-03554-6
  36. Gamie Z, Kenanidis E, Douvlis G, et al. Accuracy of the imageless mode of the ROSA robotic system for targeted resection thickness in total knee arthroplasty: a prospective, single-surgeon case-series study. Int J Med Robot. 2024;20(6):e70029. doi: 10.1002/rcs.70029
  37. Hoskins T, Begley B, Giacalone JD, et al. MakoTM robotic-arm-assisted total hip and total knee arthroplasty outcomes in an orthopedic oncology setting: a case series. J Orthop. 2023;46:70–77. doi: 10.1016/j.jor.2023.10.021
  38. Dretakis K, Koutserimpas C. Pitfalls with the MAKO robotic-arm-assisted total knee arthroplasty. Medicina (Kaunas). 2024;60(2):262. doi: 10.3390/medicina60020262
  39. Tsai HK, Bao Z, Wu D, et al. A new gap balancing technique with functional alignment in total knee arthroplasty using the MAKO robotic arm system: a preliminary study. BMC Surg. 2024;24(1):232. doi: 10.1186/s12893-024-02524-x
  40. Ma N, Sun P, Xin P, et al. Comparison of the efficacy and safety of MAKO robot-assisted total knee arthroplasty versus conventional manual total knee arthroplasty in uncomplicated unilateral total knee arthroplasty: a single-centre retrospective analysis. Int Orthop. 2024;48(9):2351–2358. doi: 10.1007/s00264-024-06234-0
  41. Shatrov J, Foissey C, Batailler C, et al. How long does image based robotic total knee arthroplasty take during the learning phase? Analysis of the key steps from the first fifty cases. Int Orthop. 2023;47(2):437–446. doi: 10.1007/s00264-022-05618-4
  42. Hutapea REP, Gani KS, Budimansyah M, et al. Precision in total knee replacement: a technical note on the VELYS robotic-assisted tibial-femoral approach. Cureus. 2024;16(11):e73104. doi: 10.7759/cureus.73104
  43. Huang P, Cross M, Gupta A, et al. Early clinical and economic outcomes for the VELYS robotic-assisted solution compared with manual instrumentation for total knee arthroplasty. J Knee Surg. 2024;37(12):864–872. doi: 10.1055/a-2343-2444
  44. Huang P, Cross M, Gupta A, et al. Are all robotic technologies created equal? Comparing one of the latest image-free robotic technologies to all other robotic systems for total knee arthroplasty. J Orthop Surg Res. 2024;19(1):647. doi: 10.1186/s13018-024-05150-8
  45. Parameswaran A, Reddy JN, Ponnala VK, et al. Precise calibration of femoral component rotation using the posterior condylar axis as a reference during image-free robot-assisted total knee arthroplasty: a technical note. J Orthop Case Rep. 2024;14(6):191–197. doi: 10.13107/jocr.2024.v14.i06.4548
  46. Cochrane NH, Kim BI, Leal J, et al. Comparing a robotic imageless second-generation system to traditional instrumentation in total knee arthroplasty: a matched cohort analysis. J Orthop. 2024;57:1–7. doi: 10.1016/j.jor.2024.05.022
  47. Adamska O, Modzelewski K, Szymczak J, et al. Robotic-assisted total knee arthroplasty utilizing NAVIO, CORI imageless systems and manual TKA accurately restore femoral rotational alignment and yield satisfactory clinical outcomes: a randomized controlled trial. Medicina (Kaunas). 2023;59(2):236. doi: 10.3390/medicina59020236
  48. Bhattacharjee SK, Kundu Choudhury A, Priyadarshi S, et al. Functional outcome in obese patients undergoing image-based cruciate retaining robotic-assisted total knee arthroplasty using the subvastus approach: a short-term study. Cureus. 2024;16(9):e68430. doi: 10.7759/cureus.68430
  49. Chandrashekar P, Babu KA, Nagaraja HS, et al. Intra-operative safety of an autonomous robotic system for total knee replacement: a review of 500 cases in India. Indian J Orthop. 2023;57(11):1800–1808. doi: 10.1007/s43465-023-00970-y
  50. Lychagin AV, Gritsyuk AA, Rukin YaA, et al. Clinical evaluation and accuracy of mechanical axis alignment in robotic total knee arthroplasty. Orthopaedic Genius. 2023;29(5):487–494. doi: 10.18019/1028-4427-2023-29-5-487-494 EDN: QKZVVF
  51. Lychagin AV, Gritsyuk AA, Rukin YaA, et al. The first experience of using a new generation of active robot in primary total knee arthroplasty. The Department of Traumatology and Orthopedics. 2024;(1):22–29. doi: 10.17238/2226-2016-2024-1-22-29 EDN: FVXTBR

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.