Review of contemporary robotic systems used in total knee arthroplasty
- Authors: Airapetov G.A.1,2, Zagorodny N.V.1,3, Daniliyants A.A.1,2, Bezverkhiy S.V.2, Naidanov V.F.2, Dmitrov I.A.2, Al Kafavin A.H.1, Samkovich D.A.1,2
-
Affiliations:
- Peoples’ Friendship University of Russia named after Patrice Lumumba
- City Clinical Hospital № 31 of the Moscow Health Department
- Priorov National Medical Research Centre of Traumatology and Orthopaedics
- Pages: 676-684
- Section: Reviews
- Submitted: 14.01.2025
- Accepted: 11.07.2025
- Published: 11.07.2025
- URL: https://journals.eco-vector.com/0869-8678/article/view/646214
- DOI: https://doi.org/10.17816/vto646214
- EDN: https://elibrary.ru/QWNLGQ
- ID: 646214
Cite item
Abstract
Recent advances in orthopedic technologies have significantly increased surgeons’ interest in robotic systems used for total knee arthroplasty. The use of robotic platforms in routine clinical practice enhances the precision of implant component positioning, improves soft tissue balance, and potentially shortens postoperative recovery time. This work aimed to provide a comparative overview of modern robotic systems utilized in primary total knee arthroplasty. A systematic search of scientific data was conducted in the PubMed, Scopus, ResearchGate, and eLIBRARY databases using relevant keywords in both Russian and English. The review includes randomized and non-randomized studies, meta-analyses, narrative reviews, and systematic reviews published over the past five years. Active and semi-active systems are identified and described in detail, along with their operating mechanisms, features of preoperative planning (image-based vs image-less), and differences between open and closed platforms. Comparative characteristics of the most widely used systems—ROSA, MAKO, VELYS, CORI, and Cuvis Joint—are presented, highlighting their advantages and limitations according to our opinion. The analysis demonstrates that none of the systems is universal; each has its own strengths and weaknesses, and the choice depends on the surgeon’s preferences, the team’s experience, and the capabilities of the medical institution. Despite the high cost of equipment and the need for specialized training, robotic technologies continue to develop rapidly and are being increasingly adopted in orthopedic surgery, including in Russia, underscoring their potential to improve treatment outcomes for patients with gonarthrosis.
Keywords
Full Text

About the authors
Georgii A. Airapetov
Peoples’ Friendship University of Russia named after Patrice Lumumba; City Clinical Hospital № 31 of the Moscow Health Department
Email: airapetovga@yandex.ru
ORCID iD: 0000-0001-7507-7772
SPIN-code: 7333-6640
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Moscow; MoscowNikolay V. Zagorodny
Peoples’ Friendship University of Russia named after Patrice Lumumba; Priorov National Medical Research Centre of Traumatology and Orthopaedics
Email: zagorodniy51@mail.ru
ORCID iD: 0000-0002-6736-9772
SPIN-code: 6889-8166
MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences
Russian Federation, Moscow, MoscowArmen A. Daniliyants
Peoples’ Friendship University of Russia named after Patrice Lumumba; City Clinical Hospital № 31 of the Moscow Health Department
Author for correspondence.
Email: armendts@mail.ru
ORCID iD: 0000-0001-6692-0975
SPIN-code: 9880-2555
Russian Federation, Moscow; Moscow
Sergey V. Bezverkhiy
City Clinical Hospital № 31 of the Moscow Health Department
Email: dr.bezverkhiy@me.com
ORCID iD: 0000-0002-2316-5241
SPIN-code: 2952-7527
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowVadim F. Naidanov
City Clinical Hospital № 31 of the Moscow Health Department
Email: adimfn@yandex.ru
ORCID iD: 0009-0009-4361-6482
SPIN-code: 3684-8349
Russian Federation, Moscow
Ivan A. Dmitrov
City Clinical Hospital № 31 of the Moscow Health Department
Email: dr.dmitrov@gmail.com
ORCID iD: 0000-0001-7051-0848
SPIN-code: 2938-4587
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowAnjum H.A. Al Kafavin
Peoples’ Friendship University of Russia named after Patrice Lumumba
Email: anjum.hasan@mail.ru
ORCID iD: 0009-0005-7329-4446
Russian Federation, Moscow
Dmitry A. Samkovich
Peoples’ Friendship University of Russia named after Patrice Lumumba; City Clinical Hospital № 31 of the Moscow Health Department
Email: dmitry.samkovitch@gmail.com
ORCID iD: 0000-0001-5770-7304
Russian Federation, Moscow; Moscow
References
- Shao W, Hou H, Han Q, et al. Prevalence and risk factors of knee osteoarthritis: a cross-sectional survey in Nanjing, China. Front Public Health. 2024;12:1441408. doi: 10.3389/fpubh.2024.1441408
- Pires DPC, Monte FAD, Monteiro LF, et al. Updates in the treatment of knee osteoarthritis. Rev Bras Ortop (Sao Paulo). 2024;59(3):e337–e348. doi: 10.1055/s-0044-1786351
- Somaiya KJ, Samal S, Boob MA. Physiotherapeutic intervention techniques for knee osteoarthritis: a systematic review. Cureus. 2024;16(3):e56817. doi: 10.7759/cureus.56817
- Marsh M, Newman S. Trends and developments in hip and knee arthroplasty technology. J Rehabil Assist Technol Eng. 2021;8:2055668320952043. doi: 10.1177/2055668320952043
- Dmitrov IA, Zakharyan NG, Bezverkhiy SV, et al. Arteriovenous fistula as a complication after total knee joint replacement. Polytrauma. 2019;(3):77–82. EDN: SXSDWD
- Parisi FR, Zampogna B, Zampoli A, et al. Planning accuracy and stem offset assessment in digital two-dimensional versus three-dimensional planning in cementless hip arthroplasty: a systematic review and meta-analysis. J Clin Med. 2024;13(21):6566. doi: 10.3390/jcm13216566
- Rodriguez-Merchan EC. Patient satisfaction following primary total knee arthroplasty: contributing factors. Arch Bone Joint Surg. 2021;9(4):379–386. doi: 10.22038/ABJS.2020.46395.2274
- Gardner J, Roman ER, Bhimani R, et al. Aetiology of patient dissatisfaction following primary total knee arthroplasty in the era of robotic-assisted technology. Bone Jt Open. 2024;5(9):758–765. doi: 10.1302/2633-1462.59.BJO-2024-0099.R1
- Selvanathan N, Ayeni FE, Sorial R. Is 80% satisfaction still the expectation in modern TKA mechanically aligned with robot assist? We think not. J Robot Surg. 2024;18(1):137. doi: 10.1007/s11701-024-01888-9
- Nagarkatti A, Strecker S, Nagarkatti D, et al. The role of imageless computer-assisted navigation during total knee arthroplasty on femoral component sagittal alignment and outcomes. Arthroplast Today. 2024;28:101455. doi: 10.1016/j.artd.2024.101455
- Mancino F, Rossi SMP, Sangaletti R, et al. Increased accuracy in component positioning using an image-less robotic arm system in primary total knee arthroplasty: a retrospective study. Arch Orthop Trauma Surg. 2024;144(1):393–404. doi: 10.1007/s00402-023-05062-y
- Li XX, Cao F, Zhao CN, et al. Global burden of osteoarthritis: prevalence and temporal trends from 1990 to 2019. Int J Rheum Dis. 2024;27(8):e15285. doi: 10.1111/1756-185X.15285
- McAuliffe M, Darwish I, Anderson J, et al. Association of technology usage and decreased revision TKA rates for low-volume surgeons using an optimal prosthesis combination: an analysis of 53 264 primary TKAs. J Bone Joint Surg Am. 2024;106(22):2063–2072. doi: 10.2106/JBJS.24.00539
- Webb ML, Hutchison CE, Sloan M, et al. Reduced postoperative morbidity in computer-navigated total knee arthroplasty: a retrospective comparison of 225 123 cases. Knee. 2021;30:148–156. doi: 10.1016/j.knee.2020.12.015
- Tsukada S, Ogawa H, Nishino M, et al. Augmented reality-assisted femoral bone resection in total knee arthroplasty. JB JS Open Access. 2021;6(3):e21.00001. doi: 10.2106/JBJS.OA.21.00001
- Lakhotia D, Agrawal U, Singh SP. A prospective randomized study on whether computer navigation is better than conventional total knee replacement in terms of short-term functional and clinical outcomes. Cureus. 2024;16(1):e53226. doi: 10.7759/cureus.53226
- Patrick NJ, Man LLC, Wai-Wang C, et al. No difference in long-term functional outcomes or survivorship after total knee arthroplasty with or without computer navigation: a 17-year survivorship analysis. Knee Surg Relat Res. 2021;33(1):30. doi: 10.1186/s43019-021-00114-2
- Shah SM. After 25 years of computer-navigated total knee arthroplasty, where do we stand today? Arthroplasty. 2021;3(1):41. doi: 10.1186/s42836-021-00100-9
- Mathew KK, Marchand KB, Tarazi JM, et al. Computer-assisted navigation in total knee arthroplasty. Surg Technol Int. 2020;36:323–330.
- Gothesen O, Skaden O, Dyrhovden GS, et al. Computerized navigation: a useful tool in total knee replacement. JBJS Essent Surg Tech. 2020;10(2):e0022. doi: 10.2106/JBJS.ST.19.00022
- Roheet SSV, Kannan A. Does robotic assistance help with bone preservation in total knee replacement? Indian J Orthop. 2024;58(8):1098–1102. doi: 10.1007/s43465-024-01126-2
- Daoub A, Qayum K, Patel R, et al. Robotic assisted versus conventional total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Robot Surg. 2024;18(1):364. doi: 10.1007/s11701-024-02048-9
- Airapetov GA, Yablonskiy PK, Serdobintsev MS, Dziov ZV, Naumov DG. Robot-assisted knee arthroplasty: first experience (a prospective randomized study). Orthopaedic Genius. 2023;29(5):475–480. doi: 10.18019/1028-4427-2023-29-5-475-480 EDN: PXAFKP
- Han S, Rodriguez-Quintana D, Freedhand AM, et al. Contemporary robotic systems in total knee arthroplasty: a review of accuracy and outcomes. Orthop Clin North Am. 2021;52(2):83–92. doi: 10.1016/j.ocl.2020.12.001
- Weiner TR, Ferreri ED, Sarpong NO, et al. Robotic total knee arthroplasty is associated with earlier return of postoperative range of motion. Surg Technol Int. 2023;43:197–201. doi: 10.52198/23.STI.43.OS1724
- Siddiqi A, Horan T, Molloy RM, et al. A clinical review of robotic navigation in total knee arthroplasty: historical systems to modern design. EFORT Open Rev. 2021;6(4):252–269. doi: 10.1302/2058-5241.6.200071
- Balaguer-Castro M, Torner P, Jornet-Gibert M, et al. Current situation of robotics in knee prosthetic surgery: a technology that has come to stay? Rev Esp Cir Ortop Traumatol. 2023;67(4):334–341. doi: 10.1016/j.recot.2023.02.012
- Shichman I, Rajahraman V, Chow J, et al. Clinical, radiographic, and patient-reported outcomes associated with a handheld image-free robotic-assisted surgical system in total knee arthroplasty. Orthop Clin North Am. 2023;54(2):141–151. doi: 10.1016/j.ocl.2022.11.009
- Buchan G, Ong C, Hecht C, et al. Equivalent radiation exposure with robotic total hip replacement using a novel, fluoroscopic-guided (CT-free) system: case-control study versus manual technique. J Robot Surg. 2023;17(4):1561–1567. doi: 10.1007/s11701-023-01554-6
- Hasegawa M, Tone S, Naito Y, et al. Comparison of accuracy and early outcomes in robotic total knee arthroplasty using NAVIO and ROSA. Sci Rep. 2024;14(1):3192. doi: 10.1038/s41598-024-53789-4
- Zhou G, Wang X, Geng X, et al. Comparison of alignment accuracy and clinical outcomes between a CT-based, saw cutting robotic system and a CT-free, jig-guided robotic system for total knee arthroplasty. Orthop Surg. 2024;16(5):1168–1174. doi: 10.1111/os.14055
- Demirtas Y, Emet A, Ayik G, et al. A novel robot-assisted knee arthroplasty system (ROSA) and 1-year outcome: a single center experience. Medicine (Baltimore). 2023;102(42):e35710. doi: 10.1097/MD.0000000000035710
- Gamie Z, Paparoidamis G, Milonakis N, et al. The ROSA knee robotic system demonstrates superior precision in restoring joint line height and posterior condylar offset compared to conventional manual TKA: a retrospective case-control study. Eur J Orthop Surg Traumatol. 2024;34(5):2449–2455. doi: 10.1007/s00590-024-03942-6
- Rossi SMP, Sangaletti R, Perticarini L, et al. High accuracy of a new robotically assisted technique for total knee arthroplasty: an in vivo study. Knee Surg Sports Traumatol Arthrosc. 2023;31(3):1153–1161. doi: 10.1007/s00167-021-06800-8
- Kenanidis E, Boutos P, Sitsiani O, et al. The learning curve to ROSA: cases needed to match the surgery time between a robotic-assisted and a manual primary total knee arthroplasty. Eur J Orthop Surg Traumatol. 2023;33(8):3357–3363. doi: 10.1007/s00590-023-03554-6
- Gamie Z, Kenanidis E, Douvlis G, et al. Accuracy of the imageless mode of the ROSA robotic system for targeted resection thickness in total knee arthroplasty: a prospective, single-surgeon case-series study. Int J Med Robot. 2024;20(6):e70029. doi: 10.1002/rcs.70029
- Hoskins T, Begley B, Giacalone JD, et al. MakoTM robotic-arm-assisted total hip and total knee arthroplasty outcomes in an orthopedic oncology setting: a case series. J Orthop. 2023;46:70–77. doi: 10.1016/j.jor.2023.10.021
- Dretakis K, Koutserimpas C. Pitfalls with the MAKO robotic-arm-assisted total knee arthroplasty. Medicina (Kaunas). 2024;60(2):262. doi: 10.3390/medicina60020262
- Tsai HK, Bao Z, Wu D, et al. A new gap balancing technique with functional alignment in total knee arthroplasty using the MAKO robotic arm system: a preliminary study. BMC Surg. 2024;24(1):232. doi: 10.1186/s12893-024-02524-x
- Ma N, Sun P, Xin P, et al. Comparison of the efficacy and safety of MAKO robot-assisted total knee arthroplasty versus conventional manual total knee arthroplasty in uncomplicated unilateral total knee arthroplasty: a single-centre retrospective analysis. Int Orthop. 2024;48(9):2351–2358. doi: 10.1007/s00264-024-06234-0
- Shatrov J, Foissey C, Batailler C, et al. How long does image based robotic total knee arthroplasty take during the learning phase? Analysis of the key steps from the first fifty cases. Int Orthop. 2023;47(2):437–446. doi: 10.1007/s00264-022-05618-4
- Hutapea REP, Gani KS, Budimansyah M, et al. Precision in total knee replacement: a technical note on the VELYS robotic-assisted tibial-femoral approach. Cureus. 2024;16(11):e73104. doi: 10.7759/cureus.73104
- Huang P, Cross M, Gupta A, et al. Early clinical and economic outcomes for the VELYS robotic-assisted solution compared with manual instrumentation for total knee arthroplasty. J Knee Surg. 2024;37(12):864–872. doi: 10.1055/a-2343-2444
- Huang P, Cross M, Gupta A, et al. Are all robotic technologies created equal? Comparing one of the latest image-free robotic technologies to all other robotic systems for total knee arthroplasty. J Orthop Surg Res. 2024;19(1):647. doi: 10.1186/s13018-024-05150-8
- Parameswaran A, Reddy JN, Ponnala VK, et al. Precise calibration of femoral component rotation using the posterior condylar axis as a reference during image-free robot-assisted total knee arthroplasty: a technical note. J Orthop Case Rep. 2024;14(6):191–197. doi: 10.13107/jocr.2024.v14.i06.4548
- Cochrane NH, Kim BI, Leal J, et al. Comparing a robotic imageless second-generation system to traditional instrumentation in total knee arthroplasty: a matched cohort analysis. J Orthop. 2024;57:1–7. doi: 10.1016/j.jor.2024.05.022
- Adamska O, Modzelewski K, Szymczak J, et al. Robotic-assisted total knee arthroplasty utilizing NAVIO, CORI imageless systems and manual TKA accurately restore femoral rotational alignment and yield satisfactory clinical outcomes: a randomized controlled trial. Medicina (Kaunas). 2023;59(2):236. doi: 10.3390/medicina59020236
- Bhattacharjee SK, Kundu Choudhury A, Priyadarshi S, et al. Functional outcome in obese patients undergoing image-based cruciate retaining robotic-assisted total knee arthroplasty using the subvastus approach: a short-term study. Cureus. 2024;16(9):e68430. doi: 10.7759/cureus.68430
- Chandrashekar P, Babu KA, Nagaraja HS, et al. Intra-operative safety of an autonomous robotic system for total knee replacement: a review of 500 cases in India. Indian J Orthop. 2023;57(11):1800–1808. doi: 10.1007/s43465-023-00970-y
- Lychagin AV, Gritsyuk AA, Rukin YaA, et al. Clinical evaluation and accuracy of mechanical axis alignment in robotic total knee arthroplasty. Orthopaedic Genius. 2023;29(5):487–494. doi: 10.18019/1028-4427-2023-29-5-487-494 EDN: QKZVVF
- Lychagin AV, Gritsyuk AA, Rukin YaA, et al. The first experience of using a new generation of active robot in primary total knee arthroplasty. The Department of Traumatology and Orthopedics. 2024;(1):22–29. doi: 10.17238/2226-2016-2024-1-22-29 EDN: FVXTBR
Supplementary files
