Localization of phenolic compounds in cells and tissues of medicinal plants (Dioscorea caucasia Lypsky, Euonymus nana Bieb., Aristolochia manshuriensis Kom.), cultivated under in vitro conditions

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The aim of the work is to study the localization of phenolic compounds in callus cultures of medicinal plants (Dioscorea caucasia Lypsky, Euonymus nana Bieb., Aristolochia manshuriensis Kom), used as raw material sources in pharmacology. Methods and materials. The object of the study was callus cultures obtained from intact plants and regenerative plants (Dioscorea caucasia Lypsky., Euonymus nana Bieb and Aristolochia manshuriensis Kom.). Callus tissue was cultured on a nutrient medium containing Мurasiga and Skuga mineral salts and growth regulators at a temperature of 250 C and a 16-hour photoperiod, In alcohol extracts of callus cultures by spectrophotometric method, the content of the sum of soluble phenolic compounds (with Folin-Denis reagent), flavans (with vanillin reagent) and flavonols (with aluminum chloride) was determined. The localization of polyphenols was determined by histochemical methods (0.08% raster of Fast Blue reagent, reaction with vanillin reagent in hydrochloric acid vapor). Results. The resulting long-passable, well-proliferating callus cultures are characterized by a high ability to form polyphenols (flavans and flavanols). Flavanols were major components of the phenolic complex. In the process of culturing callus cultures, the level of accumulation of all studied classes of polyphenols is reduced in comparison with intact plant tissues. Summary. Under in vitro conditions, the species-specific ability to synthesize phenolic compounds is preserved, which is confirmed not only by quantitative determination of phenolic compounds, but also by histochemical studies. The polyphenols in cells of the calli were localized in micro- and macrovascular, in the intercellular spaces and cell walls. Among callus cells, epiblates with a central vacuole containing a large number of polyphenols in the form of an amorphous substance, as well as small and large-faceted inclusions, were occasionally encountered.

Full Text

Restricted Access

About the authors

E. A Kalashnikova

Moscow State Agricultural University MTAA named after K.A. Timiryazev

Email: Kalash0407@mail.ru
Dr.Sc. (Biol.), Professor, Department of Genetics, Breeding and Biotechnology

S. M Zaytseva

Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin

Email: Smzaytseva@yandex.ru
Ph.D. (Biol.), Associate Professor

Thu Thuy Doan

Vietnam National University of Agriculture

Ph.D. (Biol.), Associate Professor

R. N Kirakosyan

Moscow State Agricultural University MTAA named after K.A. Timiryazev

Ph.D. (Biol.), Associate Professor, Department of Genetics, Breeding and Biotechnology


  1. Алексеева Г.М., Белодубровская Г.А., Блинова К.Ф., Гончаров М.Ю., Жохова Е.В. Фармакогнозия. Лекарственное сырье растительного и животного происхождения / Под ред. Г.П. Яковлева Санкт-Петербург. СпецЛит. 2013.
  2. Куркин В.А., Поройков В.В. Фенилпропаноиды лекарственных растений: прогноз антиоксидантной и иммуномодулирующей активности // Современные проблемы науки и образования. 2015. № 2-2.
  3. Юртаева Е.А., Ремезова И.П., Тырков А.Г., Лужнова С.А., Попова О.И. Сухой экстракт листьев лофанта анисового: получение и анализ фенольных соединений // Фармация. 2019. 68 (2): 28-32; https://doi.org/10.29296/25419218-2019-02-05.
  4. Запрометов М.Н. Фенольные соединения и их роль в жизни растения. LVI Тимирязевские чтения. М.: Наука. 1996. 45 с.
  5. Носов А.М. Регуляция синтеза вторичных соединений в культуре клеток растений. Биология культивируемых клеток и биотехнология растений / Под ред. Р.Г. Бутенко. М. Наука. 1991.
  6. Запрометов М.Н. Фенольные соединения и методы их исследования // Биохимические методы в физиологии растений. М.: Наука. 1971. С. 185-197.
  7. Soukupova J., Cvikrova M, Albrechtova J. Histochemical and Biochemical Approaches to the Study of Phenolic Compounds and Peroxidases in Needles of Norway Spruce (Picea abies) // New Phytol. 2000. V. 146. P.403-414.
  8. Дубравина Г.А., Зайцева С.М., Загоскина Н.В. Изменения в образовании и локализации фенольных соединений при дедифференциации тканей тисса ягодного и тисса канадского в условиях in vitro // Физиология растений. 2005.
  9. Тюкавкина Н.А. Биофлавоноиды. М.: Издательский дом «Русский врач». 2002. 56 с.
  10. Запрометов М. Н. Николаева Т.Н. Способность изолированных хлоропластов из листьев фасоли осуществлять биосинтез фенольных соединений // Физиология растений. 2003. Т. 50. № 5. С. 699-702.
  11. Danielle Lugato, Mariela J. Simao, Renata Garcia, Elisabeth Mansur, Georgia Pacheco. Determination of antioxidant activity and phenolic content of extracts from in vivo plants and in vitro materials of Passiflora alata Curtis // Plant Cell, Tissue and Organ Culture. 2014. V. 118. Issue 2. P. 339-346.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies