Computational modelling of interaction between isovaltrate and adenosine A1 eceptor


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Isovaltrate, a valepotriate contained in valerian roots, is an inverse agonist of adenosine Ai receptor with micromolar affinity. Here, we present results of molecular modelling of its binding to this receptor by flexible docking with Galaxy7TM web server. We modelled isovaltrate binding to human and rat adenosine A1 receptor. The modelling has shown that isovaltrate mimics xanthine antagonists upon binding to adenosine A1 receptor. It occupies similar position and forms analogous interactions: hydrogen bond with Asn254 and hydrophobic contacts with Phe171, Leu250, Ile274. Despite lacking aromatic structure, bicyclic core formed vast hydrophobic interactions with Phe171 positioning itself similar to xanthine and flavonoid core. Other studied valepotriates, valtrate and deacetylisovaltrate, were unabe to fully mimic there interactions. We proposed that xanthine, flavonoid and isovaltrate binding is provided by common structural features: flat or almost flat bicyclic core, hydrogen bond acceptor attached to it and side chains. Obtained modelling data can be used for designing new adenosine receptor blockers and sedative drugs.

Full Text

Restricted Access

About the authors

G. F Kurakin

Tver State Medical University

Email: phyzyk@mail.ru
Resident, Department of Biochemistry and Laboratory Medicine Tver

N. P Lopina

Tver State Medical University

Ph.D. (Chem.), Associate Professor, Department of Chemistry Tver

G. E Bordina

Tver State Medical University

Ph.D. (Biol.), Associate Professor, Department of Chemistry Tver

References

  1. Awang D.V.C. Valerian // In: Encyclopedia of Dietary Supplements, Second Edition. Ed. by P. Coates, J. Betz, M. Blackman, G. Cragg, M. Levine, J. Moss, J. White. Boca Raton, CRC Press, 2010.
  2. Patočka J., Jakl J. Biomedically relevant chemical constituents of Valeriana officinalis // Journal of applied biomedicine. 2010; 8(1): 11-18.
  3. Dingermann T., Loew D. Phytopharmakologie: experimentelle und klinische Pharmakologie pflanzlicher Arzneimittel. Stuttgart: Wiss. Verlagsges. mbH. 2003. XIV, 367 S.
  4. Lacher S. K., Mayer R., Sichardt K., Nieber K., Muller C. E. Interaction of valerian extracts of different polarity with adenosine receptors: identification of isovaltrate as an inverse agonist at A1 receptors // Biochemical pharmacology. 2007; 73(2): 248-258.
  5. Sachdeva S., Gupta M. Adenosine and its receptors as therapeutic targets: an overview // Saudi Pharmaceutical Journal. 2013; 21(3): 245-253.
  6. Schingnitz G., Kufner-Muhl U., Ensinger H., Lehr E., Kuhn F.J. Selective A1-antagonists for treatment of cognitive deficits // Nucleosides & Nucleotides. 1991; 10(5): 1067-1076.
  7. Daina A., Michielin O., Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules // Nucleic acids research. 2019.
  8. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne, P. E. The Protein Data Bank // Nucleic Acids Res. 2000; 28 (1): 235-242.
  9. Draper-Joyce C.J., Khoshouei M., Thal D. M. et al. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex // Nature. 2018; 558 (7711): 559-563.
  10. Jarmolinska A.I., Kadlof M., Dabrowski-Tumanski P., Sulkowska J.I. GapRepairer - a server to model a structural gap and validate it using topological analysis // Bioinformatics. 2018; 1: 8.
  11. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes // Nucleic Acids Res. 2018; 46 (W1): W296-W303.
  12. The UniProt Consortium. UniProt: the universal protein knowledgebase // Nucleic Acids Research. 2017; 45 (D1): D158-D169.
  13. Kim S., Thiessen P. A., Bolton E. E. et al. PubChem Substance and Compound databases // Nucleic Acids Res. 2016; 44(Database issue): D1202-D1213.
  14. Irwin J.J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. ZINC: a free tool to discover chemistry for biology // Journal of chemical information and modeling. 2012; 52 (7): 1757-1768.
  15. Lee G.R., Seok C. Galaxy7TM: flexible GPCR-ligand docking by structure refinement // Nucleic acids research. 2016; 44 (W1): W502-W506.
  16. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera - a visualization system for exploratory research and analysis // Journal of computational chemistry. 2004; 25 (13): 1605-1612.
  17. Jiménez Luna J., Skalic M., Martinez-Rosell G., De Fabritiis G. Kdeep: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks // Journal of chemical information and modeling. 2018; 58 (2): 287-296.
  18. Doré A.S., Robertson N., Errey J.C. et al. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine // Structure. 2011; 19(9): 1283-1293.
  19. Cheng R.K.Y., Segala E., Robertson N., Deflorian F., Doré A.S., Errey J.C., Fiez-Vandal C., Marshall F.H., Cooke R.M. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity // Structure. 2017; 25(8): 1275-1285. e4.
  20. Куракин Г.Ф., Лопина Н.П., Бордина Г.Е. Компьютерное моделирование взаимодействия флавоноидов с аденозиновыми рецепторами // Вопросы биологической, медицинской и фармацевтической химии. 2019; 22(1): 42-47
  21. Harding S.D., Sharman J.L., Faccenda E. et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY // Nucl. Acids Res. 2018; 46(D1): D1091-D1106.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies