Prospects for the use of biocatalysis in pharmacy on the example of the synthesis of luteine ethers


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Relevance. Individual natural compounds are promising basic structures for the production of semi-synthetic drugs with predictable activities. Carotenoids are characterized by the lability of the main pharmacophore, lipophilicity, and the presence of geometric isomers. Biocatalysts make it possible to solve synthesis problems associated with the physicochemical and structural features of natural compounds, in particular, carotenoids. The aim of the study is to demonstrate the possibility of using biocatalysis in pharmaceutical synthesis by the example of obtaining lutein esters. Material and methods. The synthesis of esters was carried out in a non-aqueous medium at a temperature of 37 °C in the presence of the catalyst Novozyme 435. The structure of the esters was confirmed by 1H NMR and mass spectrometry. Results. Six new esters of lutein and benzoic, 4-methylbenzoic, phenylglycolic, 2-hydroxybenzoic, nicotinic acids and ibuprofen were synthesized, and their structure was confirmed. Conclusion. Using the example of obtaining new lutein compounds, the prospect of using biocatalysis in pharmaceutical synthesis and the fundamental possibility of obtaining esters of natural individual compounds and medicinal substances are shown.

Full Text

Restricted Access

About the authors

S. V Pechinskii

Pyatigorsk Medical Pharmaceutical Institute - Branch of Volgograd State Medical University

Email: hplc@yandex.ru
Ph.D. (Pharm.), Associate Professor Pyatigorsk, Russia

References

  1. Erika Lucia Regner, Hebe Natalia Salvatierra, Mario Domingo Baigon, Licia Maria Pera. Biomass-bound biocatalysts for biodiesel production: Tuning a lipolyticactivity from Aspergillus niger MYA 135 by submerged fermentation using agro-industrial raw materials and waste products. Biomass and Bioenergy. 2019; 120: 59-67. doi.org/-10.1016/j.biombioe.2018.11.005.
  2. Mohadese Babaki, Maryam Yousefi, Zohreh Habibi, Mehdi Mohammadi, Parisa Yousefi, et al. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renewable Energy. 2016; 9:196-206. doi: 10.1016/j.renene.2016.01.053.
  3. Rozzell D., Lalonde J. Enzymatic Processes for the Production of Pharmaceutical Intermediates. In: Wu-Kuang Yeh, Hsiu-Chiung Yang, James R. McCarthy, editors. Enzyme Technologies: Metagenomics, Evolution, Biocatalysis, and Biosynthesis. USA: John Wiley & Sons, Inc. 2010; 185-198.
  4. Liu Y., Huang L., Fu Y., Zheng D., Ma J., et al. A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system. Food Chemistry. 2019; 274:535-42. doi: 10.1016/-j.foodchem.2018.08.105.
  5. Bilal M., Iqbal H.M.N., Guo S., Hu H., Wang W., Zhang X. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point. Int. J. Biol. Macromol. 2018; 108:893-901. doi: 10.1016/j.ijbiomac.2017.10.182.
  6. Choi J.M., Han S.S., Kim H.S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 2015; 33(7): 1443-54. doi: 10.1016/j.biotechadv.2015.02.014.
  7. Victoria Giorgi, Michel Chaves, Pilar Menendez, Carlos Garcia Carnelli. Bioprospecting of whole-cell biocatalysts for cholesterol biotransformation. World J. Microbiol Biotechnol. 2019; 35(1):12. doi.org/10.1007/s11274-018-2586-5
  8. Geoffrey A. Behrens, Anke Hummel, Santosh K. Padhi, Sebastian Schatzle, Uwe T. Bornscheuer discovery and protein engineering of biocatalysts for organic synthesis. Adv. Synth. Catal. 2011; 353:2191-2215. doi.org/10.1002/adsc.201100446.
  9. Caner Tozlu, Engin Şahin, Huseyin Serencam, Enes Dertli. Production of enantiomerically enriched chiral carbinols using Weissella paramesenteroides as a novel whole cell biocatalyst. Biocatalysis and Biotransformation. 2019; 37(5):388-98. doi.org/10.1080/10242422.2019.1568416.
  10. Bernala C., Rodrigueza K., Martinez R. Integrating enzyme immobilization and protein engineering: An alternativepath for the development of novel and improved industrial biocatalysts. Biotechnology Advances. 2018; 36(5): 1-10. doi: 10.1016/j.biotechadv.2018.06.002.
  11. Woodyer Ryan, van der Donk Wilfred A., Zhao Huimin. Optimizing a Biocatalyst for Improved NAD(P)H Regeneration: Directed Evolution of Phosphite Dehydrogenase. Combinatorial Chemistry & High Throughput Screening. 2006; 9: 23745. doi: 10.2174/138620706776843246.
  12. Sheldon Roger A., Woodley John M. Role of Biocatalysis in Sustainable Chemistry Chem. Rev. 2018; 118(2): 801-38. doi.org/10.1021/acs.chemrev.7b00203.
  13. Nur Royhaila Mohamad, Nur Haziqah Che Marzuki, Nor Aziah Buang, Fahrul Huyop, Roswanira Abdul Wahab. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment. 2015; 29(2):205-20. doi: 10.1080/13102818.2015.1008192.
  14. Secundo F. Conformational changes of enzymes upon immobilisation. Chem. Soc. Rev. 2013; 42(15):6250-61. doi: 10.1039/c3cs35495d.
  15. Pollard David J., Woodley John M. Biocatalysis for pharmaceutical intermediates: the future is now. TRENDS in Biotechnology. 2006; 25(2):66-73. doi: 10.1016/-j.tibtech.2006.12.005.
  16. Rouchi A. Maureen. As pharmaceutical companies face bleak prospects, their suppliers diligently tend the fertile fields of chiral chemistry in varied ways. Chem. Eng. News. 2002; 80(23):43-50. doi.org/10.1021/cen-v080n023.p043.
  17. Патент 2702005 Российская Федерация, МПК С07С 57/46 (2006.01), С07С 57/48 (2006.01), CO7D 213/127 (2006.01), CO7D 213/55 (2006.01), CO7D 213/60 (2006.01), CO7D 213/65 (2006.01). Синтез полусинтетических производных природных лютеина и астаксантина: №201845080: заявл.18.12.2018 : опубл. 03.103.2019 / Печинский С.В., Курегян А.Г. Степанова Э.Ф. 2 с.
  18. Степанова Э.Ф., Курегян А.Г., Печинский С.В., Жидкова Ю.Ю. Выделение биологически активных веществ из растительных объектов в военно-полевой технологии лекарственных средств на примере крапивы двудомной (Urtica dioica L.). Вестник Российской военномедицинской академии. 2017; №3(59): 134-139
  19. Государственный реестр лекарственных средств: официальный сайт. Москва. URL: http://grls.rosminzdrav.ru
  20. World Health Organization, global website: https://www.who.int/selection_medicines/list/en.
  21. Гарабаджиу А.В., Галъткин В.А., Карасев М.М., Козлов Г.В., Лисицкая Т.Б. Основные аспекты использования липаз для получения биодизеля (обзор). Известия Санкт-Петербургского государственного технологического института (Технического университета). 2010; 7(33): 63-67.
  22. Britton G., Liaaen-Jensen S., Pfander H. Carotenoids Handbook. Basel: Springer, 2004.
  23. Boaz; Neil Warren, Clendennen, Stephanie Kay. Patent 7566795 US. Publ. Date 28.07.2009.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies