Theoretical substantiation of the physico-chemical interaction of the active components of the dry extract of ginko biloba leaves and chitosan by the quantum-chemical calculation method


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Relevance. One of the main tasks arising in the design of dosage forms is the choice of the optimal combination of excipients and active ingredient. At the same time, the quantum-chemical prediction of the physicochemical properties of organic molecules of small and medium size is a promising direction.

The purpose of the study is the theoretical substantiation of the physicochemical interaction of the active components of the dry extract of ginkgo biloba leaves and the gel–forming agent chitosan by a quantum chemical calculation method.

Material and method. The interaction of a number of molecules included in the chitosan hydrogel was evaluated using quantum chemical calculations using the semiempirical PM7 molecular orbitals method. The initial geometry was generated using the HyperChem 8 molecular modeling program.

Results. The geometrical and electronic structure of molecules are presented in two approximations: taking into account hydration (the dielectric permittivity of the medium EPS=78.4 is given, the calculation of hydration using the A. Klamt COSMO and COSMO-RS solution models) and without taking into account hydration (in a model vacuum). Molecular descriptors used to evaluate the ability of hydrogel molecules to interact with chitosan have been calculated.

Conclusions. The theoretical prediction proves the feasibility of combining rutin, quercetin and gingcolide in a mild dosage form with the use of chitosan as a gel-forming agent.

Full Text

Restricted Access

About the authors

E. V. Kovtun

Pyatigorsk Medical and Pharmaceutical Institute – branch of the Volg State Medical University of the Ministry of Health

Author for correspondence.
Email: efstepanova@yandex.ru
ORCID iD: 0000-0003-3437-760X
SPIN-code: 9921-2190

Associate Professor

Russian Federation, Pyatigorsk

A. V. Pogrebnyak

Pyatigorsk Medical and Pharmaceutical Institute – branch of the Volg State Medical University of the Ministry of Health

Email: efstepanova@yandex.ru
ORCID iD: 0000-0002-6430-8018
SPIN-code: 8017-4255

Dr.Sc. (Chem.), Ph.D. (Pharm.), Professor

Russian Federation, Pyatigorsk

E. F. Stepanova

Pyatigorsk Medical and Pharmaceutical Institute – branch of the Volg State Medical University of the Ministry of Health

Email: efstepanova@yandex.ru
SPIN-code: 7965-9471

Dr.Sc. (Pharm.), Professor

Russian Federation, Pyatigorsk

L. V. Pogrebnyak

Pyatigorsk Medical and Pharmaceutical Institute – branch of the Volg State Medical University of the Ministry of Health

Email: efstepanova@yandex.ru
ORCID iD: 0000-0002-3683-9196
SPIN-code: 2786-3445

Ph.D. (Pharm.), Associate Professor

Russian Federation, Pyatigorsk

References

  1. Afzaletdinova N.G., Murinov Ju.I., Mullagaliev I.R. i dr. Poluchenie, ranozazhivljajushhee i protivojazvennoe dejstvie kompleksa hitozana s rodiem. Himiko-farmacevticheskij zhurnal. 2000; 34(5): 26–27.
  2. Beljaev Ju.V. Novye medicinskie materialy na osnove modificirovannyh polisaharidov (obzor). Himiko-farmacevticheskij zhurnal. 2000; 34(11): 36–41.
  3. Gal'brajh L.S. Hitin i hitozan: stroenie, svojstva, primenenie. Sorosovskij obrazovatel'nyj zhurnal. 2001; 7(7): 51–56.
  4. Varlamov V.P., Il'ina A.V., Shagdarova B.C., Lun'kov I.S., Mysjakina I.S. Hitin/hitozan i ego proizvodnye: fundamental'nye i prikladnye aspekty. Uspehi biologicheskoj himii. 2020; 60: 317–368.
  5. Mikušová V., Mikuš P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci. 2021 Sep 6; 22(17): 9652. doi: 10.3390/ijms22179652.
  6. Stewart J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and reoptimization of parameters. J. Mol. Model. 2013; 19: 1–32. https://doi.org/10.1007/ s00894-012-1667-x.
  7. Klamt Andreas. COSMO-RS for aqueous solvation and interfaces, Fluid Phase Equilibria. 2016; 407: 152–158. https://doi.org/10.1016/ j.fluid.2015.05.027.
  8. Parr R.G., Szentpaly L.V., Liu S. Electrophilicity Index. J. Am. Chem. Soc. 1999; 121: 1922–1924. https://doi.org/10.1021/ja983494x.
  9. Pogrebniak L., Pogrebniak A. Specific (by area) heat of hydration – a new molecular descriptor for evaluating component compatibility of dosage forms. Science in the modern information society XXVI. Lulu Press (USA). 2021: 119–121.
  10. Kovtun E.V. Issledovanie vlijanija strukturno-mehanicheskih pokazatelej geleobrazovatelja hitozana na tehnologiju mjagkih lekarstvennyh form, soderzhashhih jekstrakt ginkgo biloba. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2022; 23(5): 46–52 https://doi.org/10.29296/25877313-2022-05-07.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Three-dimensional model of gincolide B

Download (45KB)
3. Figure 2. Fragment of a chitosan molecule

Download (61KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies