Development of nasal pharmaceutical products for systemic exposure: use of permeation enhancers to achieve target product profile

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In recent years, special attention has been paid to non-invasive parenteral routes of administration, which are an alternative to injectable drugs, as well as other dosage forms whose effectiveness and safety may be compromised by the administration route. At the same time, there is a paradigm shift in relation to nasal dosage forms: they are no longer considered as primarily drugs exhibiting local effects, and an increasing number of nasal medicinal products with systemic action are appearing on the market. There is a growing interest to the nasal delivery due to the possibility of maximizing the therapeutic potential of active substances that have proven themselves in clinical practice, for example, by quick targeted action to the site of the pathological process, increased bioavailability of the drug and reduced possible side effects. The nasal cavity as a site for systemic drug absorption has anatomical and physiological features that include a relatively large surface area, a porous endothelial basement membrane, a highly vascularized epithelial layer, high total blood flow, lack of first-pass metabolism, and easy access. Therefore, the development of a convenient (nasal) dosage form of the drug with a rapid onset of action is a promising approach. When developing a new pharmaceutical product, the factors that determine bioavailability should be taken into account and addressed by appropriate formulation and delivery techniques: the use of mucoadhesive components or substances that modulate mucociliary clearance, variation of the viscosity or osmolarity, or selection of an appropriate dosing device. Improving intranasal absorption is a promising direction for obtaining drugs with improved consumer properties. In addition to the functional properties of the formulations, safety aspects must also be taken into account. The article provides an analysis of the limiting factors for nasal preparations, strategies for increasing bioavailability, permeation enhancement mechanisms, and provides examples of the application of permeation enhancers used in developed and commercially available drugs. This review gives an idea on possible to use in nasal formulations permeation enhancers which have different mode of actions.

Full Text

Restricted Access

About the authors

I. V. Vlasenko

Ferring Production LLC

Author for correspondence.
Email: julietvlasenko@gmail.com
ORCID iD: 0000-0003-3830-8310

General Director

Russian Federation, Moscow

N. V. Menshutina

Mendeleev University of Chemical Technology

Email: nmenshutina@yandex.ru
ORCID iD: 0000-0001-7806-1426

Dr.Sc. (Eng.), Professor, Leading Research Scientist, Head of the Department of Chemical and Pharmaceutical Engineering

Russian Federation, Moscow

References

  1. Thorat S. Formulation and Product Development of Nasal Spray: An Overview. Scholars Journal of Applied Medical Sciences (SJAMS). 2016;4(8D):2976–2985. doi: 10.36347/sjams.2016.v04i08.048.
  2. Kim D., Kim Y.H., Kwon S. Enhanced nasal drug delivery efficiency by increasing mechanical loading using hypergravity. Scientific Reports. 2018;8(168). doi: 10.1038/s41598-017-18561-x.
  3. Gizurarson S. The Effect of Cilia and the Mucociliary Clearance on Successful Drug Delivery. Biological and Pharmaceutical Bulletin. 2015;38(4):497–506. doi: 10.1248/bpb.b14-00398.
  4. Luo D., Ni X., Yang H.et al. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. European Journal of Pharmaceutical Sciences. 2024;192:106630. doi: 10.1016/j.ejps.2023.106630.
  5. Bitter C., Suter-Zimmermann K., Surber C. Nasal drug delivery in humans. Curr Probl Dermatol. 2011;40:20–35. doi: 10.1159/000321044.
  6. Moghimipour E., Ameri A., Handali S. Absorption-Enhancing Effects of Bile Salts. Molecules. 2015 Aug 10;20(8):14451–14473. doi: 10.3390/molecules200814451.
  7. Tai J., Han M., Lee D. et. al. Different Methods and Formulations of Drugs and Vaccines for Nasal Administration. Pharmaceutics. 2022 May 17;14(5):1073. doi: 10.3390/pharmaceutics14051073.
  8. Deli M.A. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2009;1788(4):892–910. doi: 10.1016/j.bbamem.2008.09.016.
  9. Chavanpatil M.D., Vavia P.R. The influence of absorption enhancers on nasal absorption of acyclovir. Eur. J. Pharm. Biopharm. 2004;57(3):483–487. doi: 10.1016/j.ejpb.2004.01.001.
  10. Kim I.W., Yoo H., Song I.S. et.al. Effect of excipients on the stability and transport of recombinant human epidermal growth factor (rhEGF) across CACO-2 cell monolayers. Arch. Pharm. Res. 2003;26(4):330–337. doi: 10.1007/BF02976964.
  11. Amancha K.P., Hussain A. Effect of protease inhibitors on pulmonary bioavailability of therapeutic proteins and peptides in the rat. Eur. J. Pharm. Sci. 2015;68:1–10. doi: 10.1016/j.ejps.2014.11.008.
  12. Ghadiri M., Canney F., Pacciana C. et.al. The use of fatty acids as absorption enhancer for pulmonary drug delivery. Int. J. Pharm. 2018;541:93–100. doi: 10.1016/j.ijpharm.2018.02.027.
  13. Ghadiri M., Mamlouk M., Spicer P. et.al. Effect of polyunsaturated fatty acids (PUFAs) on airway epithelial cells' tight junction. Pulm. Pharmacol. Ther. 2016;40:30–38. doi: 10.1016/j.pupt.2016.07.004.
  14. Li F., Yang X.L., Yang Y.A. et.al. Phospholipid complex as an approach for bioavailability enhancement of echinacoside. Drug Dev. Ind. Pharm. 2015;41(11):1777–1784. doi: 10.3109/03639045.2015.1004183.
  15. Chono S., Fukuchi R., Seki T., Morimoto K. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery. J. Control. Release. 2009;137(2):104–109. doi: 10.1016/j.jconrel.2009.03.019.
  16. Benediktsdottir B.E., Gudjonsson T., Baldursson O., Masson M. N-alkylation of highly quaternized chitosan derivatives affects the paracellular permeation enhancement in bronchial epithelia in vitro. Eur. J. Pharm. Biopharm. 2014; 86(1):55–63. doi: 10.1016/j.ejpb.2013.04.002.
  17. Yamada K., Odomi M., Okada N., Fujita T., Yamamoto A. Chitosan Oligomers as Potential and Safe Absorption Enhancers for Improving the Pulmonary Absorption of Interferon-α in Rats. J. Pharm. Sci.-US. 2005; 94(11):2432–2440. doi: 10.1002/jps.20454.
  18. Yamamoto A., Yamada K., Muramatsu H., et.al. Control of pulmonary absorption of water-soluble compounds by various viscous vehicles. Int. J. Pharm. 2004;282(1-2):141–149. doi: 10.1016/j.ijpharm.2004.06.008.
  19. Shimpi S., Chauhan B., Shimpi P. Cyclodextrins: Application in different routes of drug administration. Acta Pharm. 2005;55(2):139–156.
  20. Suzuki H., Kondoh M., Li X. et. al. A toxicological evaluation of a claudin modulator, the C-terminal fragment of Clostridium perfringens enterotoxin, in mice. Pharmazie. 2011;66(7):543–546. doi: 10.1691/ph.2011.0365.
  21. Bagger M.A., Nielsen H.W., Bechgaard E. Nasal bioavailability of peptide T in rabbits: absorption enhancement by sodium glycocholate and glycofurol. Eur J Pharm Sci. 2001;14(1):69–74. doi: 10.1016/S0928-0987(01)00146-4.
  22. Li Y., Li J., Zhang X., Ding J., Mao S. Non-ionic surfactants as novel intranasal absorption enhancers: in vitro and in vivo characterization. Drug Deliv. 2016;23(7):2272–2279. doi: 10.3109/10717544.2014.971196.
  23. Del Vecchio G., Tscheik C., Tenz K. et.al. Sodium Caprate Transiently Opens Claudin-5-Containing Barriers at Tight Junctions of Epithelial and Endothelial Cells. Mol. Pharm. 2012;9:2523–2533. doi: 10.1021/mp3001414.
  24. Sørli J.B., Balogh Sivars K., Da Silva E. et. al. Bile salt enhancers for inhalation: Correlation between in vitro and in vivo lung effects. Int. J. Pharm. 2018;550:114–122. doi: 10.1016/j.ijpharm.2018.08.031.
  25. Schulz J.D., Gauthier M.A., Leroux J.C. Improving oral drug bioavailability with polycations? Eur. J. Pharm. Biopharm. 2015;97:427–437. doi: 10.1016/j.ejpb.2015.04.025.
  26. Bayomi M.A., Abanumay K.A., Al-Angary A.A. Effect of inclusion complexation with cyclodextrins on photostability of nifedipine in solid state. Int J Pharm. 2002;243:107–117. doi: 10.1016/S0378-5173(02)00263-6.
  27. Brewster M. E., Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Advanced drug delivery reviews. 2007;59(7):645–666. doi: 10.1016/j.addr.2007.05.012.
  28. Jassim Z.E., Al-Akkam E.J. A review on strategies for improving nasal drug delivery systems. Drug Invention Today. 2018;10:2857–2864.
  29. Natsheh H., Touitou E. Phospholipid Magnesome—a nasal vesicular carrier for delivery of drugs to brain. Drug Deliv. Transl. Res. 2018;8:806–819. doi: 10.1007/s13346-018-0503-y.
  30. Salama H.A., Mahmoud A.A., Kamel A.O. et. al. Characterization of fatty acid liposome coated with low-molecular-weight chitosan. J. Liposomal. Res. 2012;22:336–345. doi: 10.3109/08982104.2012.700459.
  31. Salama H.A., Mahmoud A.A., Kamel A.O. et.al. Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route. Colloids Surf. B Biointerfaces. 2012;100:146–154. doi: 10.1016/j.colsurfb.2012.05.010.
  32. Aboud H.M., Ali A.A., El-Menshawe S.F., Elbary A.A. Nanotransfersomes of carvedilol for intranasal delivery: formulation, characterization and in vivo evaluation. Drug Deliv. 2016;23(7):2471–2481. doi: 10.3109/10717544.2015.1013587.
  33. Mouez M.A., Nasr M., Abdel-Mottaleb M., Geneidi A.S., Mansour S. Composite chitosan-transfersomal vesicles for improved transnasal permeation and bioavailability of verapamil. Int. J. Biol. Macromol. 2016;93:591–599. doi: 10.1016/j.ijbiomac.2016.09.027.
  34. Naguib M.J., Salah S., Halim S.A.A., Badr-Eldin S.M. Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine. Int J. Pharm. 2020;582:119302. doi: 10.1016/j.ijpharm.2020.119302.
  35. Jones R.S. Conceptual Model for Using Imidazoline Derivative Solutions in Pulpal Management. J. Clin. Med. 2021;10(6):1212. doi: 10.3390/jcm10061212.
  36. Ruiz L., Aroche K., Reyes N. Aggregation of recombinant human interferon alpha 2b in solution: Technical note. AAPS PharmSciTech. 2006;7:99. doi: 10.1208/pt070499.
  37. Moghadam S.H., Saliaj E., Wettig S.D. et al. Effect of Chemical Permeation Enhancers on Stratum Corneum Barrier Lipid Organizational Structure and Interferon Alpha Permeability Molecular Pharmaceutics. 2013;10(6):2248–2260. doi: 10.1021/mp300441c.
  38. Highlights of prescribing information Valtoco. Режим доступа: https://www.accessdata.fda.gov/drugsatfda_docs/ label/2020/211635s000lbl.pdf (дата обращения / accessed: 01.04.2024)
  39. Highlights of prescribing information Tosymra. Режим доступа: https://www.accessdata.fda.gov/drugsatfda_docs/la-bel/2019/210884s000lbl.pdf (дата обращения / accessed: 01.04.2024)
  40. Highlights of prescribing information Natesto. Режим доступа: https://www.accessdata.fda.gov/drugsatfda_docs/label/ 2014/205488s000lbl.pdf (дата обращения / accessed: 01.04.2024)
  41. Highlights of prescribing information Nayzilam. Режим доступа: https://www.accessdata.fda.gov/drugsatfda_docs/la-bel/2019/211321s000lbl.pdf (дата обращения / accessed: 01.04.2024)
  42. Highlights of prescribing information Noctiva. Режим доступа: https://www.accessdata.fda.gov/drugsatfda_docs/la-bel/2017/201656lbl.pdf (дата обращения / accessed: 01.04.2024)
  43. Highlights of prescribing information Baqsimi. Режим доступа: https://www.accessdata.fda.gov/drugsatfda_docs/la-bel/2019/210134s000lbl.pdf (дата обращения / accessed: 01.04.2024)
  44. EMA/CHMP/602404/2019. Режим доступа: https://www. ema.europa.eu/en/documents/assessment-report/baqsimiepar -public-assessment-report_en.pdf (дата обращения / accessed: 01.04.2024)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies