Effect of monoamine oxidase inhibitor on free radical oxidation in rat kidneys with alloxan-induced hyperglycemia. Problems of biological, medical and pharmaceutical chemistry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. One of the most severe and dangerous complications of diabetes mellitus (DM) is diabetic nephropathy, the leading pathogenetic factor of which is considered to be prolonged hyperglycemia with the development of oxidative stress. Several leading redox-dependent mechanisms of diabetic nephropathy have been described, among which an important role is played by oxidases, as a key link in the redox balance in podocytes. The kidneys are characterized by high activity of monoamine oxidases (MAO), which are active producers of hydrogen peroxide. Meanwhile, the contribution of monoamine oxidases to the development of oxidative stress in the kidneys under conditions of prolonged hyperglycemia remains unexplored.

Purpose of the study – to assess the contribution of monoamine oxidases to the development of oxidative stress in the kidneys under conditions of long-term hyperglycemia induced by alloxan.

Material and methods. The study was conducted on 111 Wistar rats of both sexes, weighing 180–250 grams. Diabetes mellitus was modeled by intraperitoneal administration of alloxan monohydrate at a dose of 163 mg/kg. To assess the contribution of MAO-B to the development of oxidative stress, the selective MAO-B inhibitor selegiline was used at a dose of 5 mg/kg. Throughout the experiment, glycemia and body weight of the animals were monitored. Animals were removed from the experiment on the seventeenth day. The levels of oxidative modification of proteins, lipid peroxidation products, as well as the activity of monoamine oxidases A and B in kidney homogenates were determined by spectrophotometric methods.

Results. It was found that on the fourteenth day from the moment of alloxan administration, signs of oxidative stress (increased oxidative modification of proteins) are revealed in the kidneys. The results of the correlation analysis demonstrate direct correlations in the "Alloxan" group of animals between the level of blood glucose on the 14th day of the experiment and the levels of products of oxidative modification of proteins, as well as the activity of MAO-B and the levels of products of oxidative modification of proteins and primary heptane-soluble lipid peroxidation products in kidneys. The absence of this kind of relationship in the group of animals that additionally received a MAO-B inhibitor ("Alloxan + selegiline").

Conclusions. The results of the study confirms the contribution of the intensification of free radical oxidation to the development of diabetic nephropathy during prolonged hyperglycemia, on the one hand, and the prooxidant effect of MAO-B on the other.

Full Text

Restricted Access

About the authors

A. I. Sinitskii

South Ural State Medical University

Author for correspondence.
Email: Sinitskiyai@yandex.ru
ORCID iD: 0000-0001-5687-3976

Dr.Sc. (Med.), Associate Professor, Head of the Department of Biochemistry named after R.I. Lifshits

Russian Federation, Vorovskogo street, 64, Chelyabinsk, 454092

V. S. Noskova

South Ural State Medical University; Chelyabinsk State University

Email: noskova_rysya@mail.ru
ORCID iD: 0009-0008-7434-5710

Post-graduate Student of the Department of Biochemistry named after. R.I. Lifshits, Senior Lecturer of the Department of Microbiology, Immunology and General Biology

Russian Federation, Vorovskogo street, 64, Chelyabinsk, 454092; Br. Kashirinykh street, 129, Chelyabinsk, 454001

P. К. Vinel

South Ural State Medical University

Email: vinelpolina@icloud.com
ORCID iD: 0000-0002-3745-3690

Post-graduate Student of the Department of Biochemistry named after. R.I. Lifshits

Russian Federation, Vorovskogo street, 64, Chelyabinsk, 454092

Yu. M. Shatrova

South Ural State Medical University

Email: shatr20@yandex.ru
ORCID iD: 0000-0002-8865-6412

Ph.D. (Biol.), Research Scientist of the Research Institute of Immunology, Associate Professor of the Department of Biochemistry named after. R.I. Lifshits

Russian Federation, Vorovskogo street, 64, Chelyabinsk, 454092

E. E. Polevshchikova

South Ural State Medical University

Email: caramella-a@mail.ru
ORCID iD: 0009-0003-3831-139X

Ph.D. (Biol.), Associate Professor of the Department of Pharmacy and Chemistry, Faculty of Pharmacy

Russian Federation, Vorovskogo street, 64, Chelyabinsk, 454092

References

  1. Шпаков А.О., Казначеева Е.В. Молекулярные механизмы апоптоза гломерулярных подоцитов в условиях диабети-ческой нефропатии. Биологические мембраны. 2020; 37(4): 243–263. [Shpakov A.O., Kaznacheeva E.V. Molekuljarnye mehanizmy apoptoza glomeruljarnyh podocitov v uslovijah diabeticheskoj nefropatii. Biologicheskie membrany. 2020; 37 (4): 243–263. (In Russ.)]. doi: 10.31857/S0233475520030056.
  2. Hung P.H., Hsu Y.C., Chen T.H., et al. Recent advances in diabetic kidney diseases: from kidney injury to kidney fibrosis. International Journal of Molecular Sciences. 2021; 22 (21): 11857. doi: 10.3390/ijms222111857.
  3. Nicotra A., Pierucci F., Parvez H., et al. Monoamine oxidase expression during development and aging. Neuro-toxicology. 2004; 25(1-2): 155–165. doi: 10.1016/S0161-813X(03)00095-0.
  4. Ostadkarampour M., Putnins E.E. Monoamine oxidase inhibitors: a review of their anti-inflammatory therapeutic potential and mechanisms of action. Frontiers in Pharmacology. 2021; 12: 676239. doi: 10.3389/fphar.2021.676239.
  5. Sakashita M., Tanaka T., Inagi R. Metabolic changes and oxidative stress in diabetic kidney disease. Antioxidants. 2021; 10 (7): 1143. doi: 10.3390/antiox10071143.
  6. Qiu J., Li C., Dong Z., et al. Anti-diabetic effect of a monoamine oxidase inhibitor (tranylcypromine) in rats with poorly-controlled blood glucose levels: A potential and novel therapeutic option for diabetes. Tropical Journal of Pharmaceutical Research. 2020; 19 (6): 1249–1254. doi: 10.4314/tjpr.v19i6.20.
  7. Миронов А.Н., Бунятян Н.Д., Васильев А.Н., и др. Руководство по проведению доклинических исследований лекарственных средств. М.: Гриф и К, 2012; С. 944. [Mironov A.N., Bunjatjan N.D., Vasil'ev A.N., i dr. Rukovodstvo po provedeniju doklinicheskih issledovanij lekarstvennyh sredstv. M.: Grif i K, 2012; S. 944. (In Russ.).].
  8. Баранов В.Г. Экспериментальный сахарный диабет. Л.: Наука, 1983. 240 с. [Baranov V.G. Eksperimental'nyy sakharnyy diabet. Leningrad: Nauka; 1983. 240 p. (In Russ.)].
  9. Amini-Khoei H., Saghaei E., Mobini G.R., et al. Possible involvement of PI3K/AKT/mTOR signaling pathway in the protective effect of selegiline (deprenyl) against memory impairment following ischemia reperfusion in rat. Neuropeptides. 2019; 77: 101942. doi: 10.1016/j.npep.2019.101942.
  10. Castillo J., Hung J., Rodriguez M., et al. LED fluorescence spectroscopy for direct determination of monoamine oxidase B inactivation. Anal Biochem. 2005; 343(2): 293-298. doi: 10.1016/j.ab.2005.05.027.
  11. Фомина М.А., Абаленихина Ю.В. Способ комплексной оценки содержания продуктов окислительной модифи-кации белков в тканях и биологических жидкостях: методические рекомендации. Рязань: РИО РязГМУ, 2014: 60. [Fomina M.A., Abalenihina Ju.V. Sposob kompleksnoj ocenki soderzhanija produktov okislitel'noj modifikacii belkov v tkanjah i biologicheskih zhidkostjah: metodicheskie rekomendacii. Rjazan': RIO RjazGMU, 2014:60. (In Russ.)].
  12. Волчегорский И.А., Налимов А.Г., Яровинский Б.Г. и др. Сопоставление различных подходов к определению про-дуктов перекисного окисления липидов в гептан-изопро-панольных экстрактах крови. Вопросы медицинской химии. 1989; 35 (1): 127–131. [Volchegorskij I.A., Nalimov A.G., Jarovinskij B.G., i dr. Sopostavlenie razlichnyh podhodov k opredeleniju produktov perekisnogo okislenija lipidov v geptan-izopropanol'nyh jekstraktah krovi. Voprosy medicinskoj himii. 1989; 35 (1): 127–131. (In Russ.)].
  13. Львовская Е.И., Волчегорский И.А., Шемяков С.Е. и др. Спектрофотометрическое определение конечных про-дуктов перекисного окисления липидов. Вопросы меди-цинской химии. 1991; 37 (4): 92–93. [L'vovskaja E.I., Volchegorskij I.A., Shemjakov S.E., i dr. Spektrofotomet-richeskoe opredelenie konechnyh produktov perekisnogo okislenija lipidov. Voprosy medicinskoj himii. 1991; 37 (4): 92–93. (In Russ.)].
  14. Vinel P.K., Grobovoy S.I., Sinitskii A.I., et al. Modification of a spectrophotometric method for assessment of monoamine oxidase activity with 2, 4-dinitrophenylhydrazine as a deri-vatizing reagent. Analytical Biochemistry. 2021; 629: 114294. doi: 10.1016/j.ab.2021.114294.
  15. Isirima J.C., Uahomo P.O. Effect of acalypha wilkesiana on oxidative stress and histopathology of liver and kidney in alloxan-induced diabetic albino rats. Journal of Complementary and Alternative Medical Research. 2023; 22 (4): 11–25. doi: 10.9734/JOCAMR/2023/v22i4463.
  16. Aslam B., Hussain A., Sindhu Z. U. D., et al. Polyphenols-rich polyherbal mixture attenuates hepatorenal impairment, dyslipi-daemia, oxidative stress and inflammation in alloxan-induced diabetic rats. Journal of Applied Animal Research. 2023; 51(1): 516–524. doi: 10.1080/09712119.2023.2230754.
  17. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008; 51(2): 216–226. doi: 10.1007/s00125-007-0886-7.
  18. Пальчикова Н.А., Кузнецова Н. В., Кузьминова О.И. и др. Гормонально-биохимические особенности аллоксановой и стрептозотоциновой моделей экспериментального диабета. Сибирский научный медицинский журнал. 2013; 33(6): 18–24. [Pal'chikova N.A., Kuznecova N.V., Kuz'minova O.I. i soavt. Gormonal'no-biohimicheskie oso-bennosti alloksanovoj i streptozotocinovoj modelej jeksperi-mental'nogo diabeta. Sibirskij nauchnyj medicinskij zhurnal. 2013; 33(6): 18–24. (In Russ.)].
  19. Kleinridders A., Cai W., Cappellucci L., et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(11): 3463–3468. doi: 10.1073/pnas.1500877112.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies