Succinate-receptor system of bone and cartilage tissue in patients with metabolic phenotype of osteoarthritis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Melatonin, by inducing the expression of antioxidant enzymes and signaling proteins, enhances the effects in the development of pathological processes occurring against the background of oxidative stress, therefore the stabilization of the protective principles of melatonin is a relevant area of research, allowing us to identify new ways of development and treatment of osteoarthritis.

The aim. To study the effect of melatonin on the succinate receptor system of chondrocytes in osteoarthritis under conditions of oxidative stress in vitro.

Materials and methods. The in vitro study was carried out on chondrocyte cell cultures. Melatonin was added to chondrocytes to obtain final concentrations of 100 μM and 500 μM; and hydrogen peroxide (H₂O₂) – 200 µM. The duration of exposure was 24 hours for melatonin and 12 hours for H₂O₂. Succinate levels and expression of its receptor (SUCNR1) were determined in mitochondria and chondrocyte lysates.

Results. It was found that the addition of H₂O₂ at a dose of 200 μM to the nutrient medium for 12 hours led to a fold increase in the level of succinate and SUCNR1 expression in chondrocyte cells. Pre-incubation of chondrocyte cells with melatonin at concentrations of 100 µM and 500 µM, followed by modeling of oxidative stress (H₂O₂ 200 µM) led to a decrease in the expression of the succinate receptor system.

Conclusion. When H₂O₂ is added to the cellular environment of chondrocytes, high expression of SUCNR1 and an increase in succinate levels are observed. Melatonin treatment limits H₂O₂-induced succinate accumulation and reduces SUCNR1 expression in human chondrocyte cells of the metabolic phenotype of osteoarthritis.

Full Text

Restricted Access

About the authors

D. R. Shodiev

Ryazan State Medical University named after academician I. P. Pavlov

Author for correspondence.
Email: shodiev.dima@yandex.ru
ORCID iD: 0000-0002-4530-2964

Post-graduate Student

Russian Federation, Vysokovoltnaya str., 9, 390026, Ryazan

V. I. Zvyagina

Ryazan State Medical University named after academician I. P. Pavlov

Email: vizvyagina@yandex.ru
ORCID iD: 0000-0003-2800-5789

Dr. Sc. (Med.), Associated Professor of Department of Biochemistry

Russian Federation, Vysokovoltnaya str., 9, 390026, Ryazan

M. N. Ryabova

Ryazan State Medical University named after academician I. P. Pavlov

Email: rmn62doc@yandex.ru
ORCID iD: 0000-0002-1707-2567

Ph. D. (Med.), Associated Professor of Department of General Surgery, Traumatology and Orthopedics

Russian Federation, Vysokovoltnaya str., 9, 390026, Ryazan

Yu. A. Marsyanova

Ryazan State Medical University named after academician I. P. Pavlov

Email: yuliyamarsyanova@yahoo.com
ORCID iD: 0000-0003-4948-4504

Associated Professor of Department of Biochemistry

Russian Federation, Vysokovoltnaya str., 9, 390026, Ryazan

References

  1. Li Z., Huang Z., Bai L. Cell Interplay in Osteoarthritis. Front Cell Dev Biol. 2021 Aug 3; 9: 720477. DOI: 10. 3389/fcell. 2021. 720477.
  2. Tseng T. H., Chen C. L., Chang C. H. et al. IL-6 induces periostin production in human ACL remnants: a possible mechanism causing post-traumatic osteoarthritis. J Orthop Surg Res. 2023 Nov 2; 18(1): 824. DOI: 10. 1186/s13018-023-04308-0.
  3. Zhang M., Cheng Y., Zhai Y. et al. Attenuated succinate accumulation relieves neuronal injury induced by hypoxia in neonatal mice. Cell Death Discov. 2022 Mar 28; 8(1): 138. DOI: 10. 1038/s41420-022-00940-7/
  4. Martínez-Reyes I., Chandel N. S. Mitochondrial T. C. A cycle metabolites control physiology and disease. Nat Commun. 2020 Jan 3; 11(1): 102. DOI: 10. 1038/s41467-019-13668-3.
  5. Liang Y., Shen L., Ni W. et al. CircGNB1 drives osteo-arthritis pathogenesis by inducing oxidative stress in chondrocytes. Clin Transl Med. 2023 Aug; 13(8): e1358. DOI: 10. 1002/ctm2. 1358.
  6. Villanueva-Carmona T., Cedó L., Madeira A. et al. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab. 2023 Apr 4; 35(4): 601–619. e10. DOI: 10. 1016/j. cmet. 2023. 03. 004.
  7. Yu M., Wang D., Chen X. et al. BMSCs-derived Mitochondria Improve Osteoarthritis by Ameliorating Mitochondrial Dysfunction and Promoting Mitochondrial Biogenesis in Chondrocytes. Stem Cell Rev Rep. 2022 Dec; 18(8): 3092–3111. DOI: 10. 1007/s12015-022-10436-7.
  8. Bubb K., Holzer T., Nolte J. L. et al. Mitochondrial respiratory chain function promotes extracellular matrix integrity in cartilage. J Biol Chem. 2021 Oct; 297(4): 101224. DOI: 10. 1016/j. jbc. 2021. 101224.
  9. Wu X., Liyanage C., Plan M. et al. Dysregulated energy metabolism impairs chondrocyte function in osteoarthritis. Osteoarthritis Cartilage. 2023 May; 31(5):613–626. DOI: 10. 1016/j. joca. 2022. 11. 004.
  10. Lerner A. B., Case J. D., Takahashi Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem. 1960 Jul; 235: 1992-7.
  11. Joseph T. T., Schuch V., Hossack D. J. et al. Melatonin: the placental antioxidant and anti-inflammatory. Front Immunol. 2024 Feb 1; 15: 1339304. DOI: 10. 3389/fimmu. 2024. 1339304.
  12. Liu S. C., Tsai C. H., Wang Y. H. et al. Melatonin abolished proinflammatory factor expression and antagonized osteoarthritis progression in vivo. Cell Death Dis. 2022 Mar 7; 13(3): 215. DOI: 10. 1038/s41419-022-04656-5.
  13. Gu C., Yang H., Chang K. et al. Melatonin alleviates progression of uterine endometrial cancer by suppressing estrogen/ubiquitin C/SDHB-mediated succinate accumulation. Cancer Lett. 2020 Apr 28; 476: 34–47. DOI: 10. 1016/j. canlet. 2020. 02. 009.
  14. Uluışık D., Keskin E., Özaydın T. et al. Ameliorative effects of the melatonin on some cytokine levels, NF-κB immunoreactivity, and apoptosis in rats with cerulein-induced acute pancreatitis. Iran J Basic Med Sci. 2024; 27(3): 279–285.
  15. Liu H., Li Z., Cao Y. et al. Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: A possible pathway for osteoarthritis pathology at the subcellular level. Mol Med Rep. 2019; 20(4): 3308–3316. DOI:10. 3892/mmr. 2019. 10559.
  16. Zare Javid A., Hosseini S. A., Gholinezhad H. et al. Antioxidant and Anti-Inflammatory Properties of Melatonin in Patients with Type 2 Diabetes Mellitus with Periodontal Disease Under Non-Surgical Periodontal Therapy: A Double-Blind, Placebo-Controlled Trial. Diabetes Metab Syndr Obes. 2020 Mar 18; 13: 753–761. DOI: 10. 2147/DMSO. S242208.
  17. Gao G., Ding H., Zhuang C., Fan W. Effects of Hesperidin on H₂O₂-Treated Chondrocytes and Cartilage in a Rat Osteoarthritis Model. Med Sci Monit. 2018 Dec 17; 24: 9177–9186. DOI: 10. 12659/MSM. 913726.
  18. Cui T., Lan Y., Lu Y. et al. Isoorientin ameliorates H₂O₂-induced apoptosis and oxidative stress in chondrocytes by regulating MAPK and PI3K/Akt pathways. Aging (Albany NY). 2023 Jun 5; 15(11): 4861–4874. DOI: 10. 18632/aging. 204768.
  19. Yu S., Tang Q., Chen G. et al. Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis. Cell Death Differ. 2022 Apr; 29(4): 874–887. DOI: 10. 1038/s41418-021-00919-4.
  20. Кореновский Ю. В., Удут В. В. S-нитрозоглутатион повы-шает экспрессию протеина ММП-1 в клетках линии HT1080 при гипоксической гипоксии. Бюллетень медицинской науки. 2019; 2(14): 26–30. [Korenovsky Yu. V, Udut V. V. S-nitro-soglutathione increases the expression of MMP-1 protein in cells of the HT1080 line in hypoxic hypoxia. Byulleten` medicinskoj nauki. 2019; 2(14): 26–30. (In Russ.)]. DOI: 10. 31684/2541-8475. 2019. 2(14). 26-30.
  21. Dobiasová S., Řehořová K., Kučerová D. et al. Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-inflammatory Potential. Antioxidants (Basel). 2020; 9(5): 455. DOI:10. 3390/antiox9050455.
  22. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7; 72: 248–254. DOI: 10. 1006/abio. 1976. 9999.
  23. Абаленихина Ю. В., Ерохина П. Д., Сеидкулиева А. А. и др. Внутриклеточная локализация и функция ядерного фактора эритроидного происхождения 2 (Nrf2) в условиях моделирования окислительного стресса in vitro. Российский медико-биологический вестник имени академика И. П. Павлова. 2022; 30(3): 295–304. [Abalenikhina Yu. V., Erokhina P. D., Seidkuliyeva A. A. et al. Intracellular Location and Function of Nuclear Factor of Erythroid Origin 2 (Nrf2) in Modeling Oxidative Stress in vitro. I. P. Pavlov Russian Medical Biological Herald. 2022; 30(3): 295–304. (In Russ.)]. DOI: https://doi. org/10. 17816/PAVLOVJ10557.
  24. Kamarauskaite J., Baniene R., Trumbeckas D. et al. Increased Succinate Accumulation Induces ROS Generation in in vivo Ischemia. Reperfusion-Affected Rat Kidney Mitochondria. Biomed Res Int. 2020 Oct 13; 2020: 8855585. DOI: 10. 1155/2020/8855585.
  25. Wu K. K. Extracellular Succinate: A Physiological Messenger and a Pathological Trigger. Int J Mol Sci. 2023 Jul 6; 24(13): 11165. DOI: 10. 3390/ijms241311165.
  26. Osuna-Prieto F. J., Martinez-Tellez B., Ortiz-Alvarez L. et al. Elevated plasma succinate levels are linked to higher cardiovascular disease risk factors in young adults. Cardiovasc Diabetol. 2021 Jul 27; 20(1): 151. DOI: 10. 1186/s12933-021-01333-3.
  27. Littlewood-Evans A., Sarret S., Apfel V. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med. 2016 Aug 22; (9): 1655–62. DOI: 10. 1084/jem. 20160061.
  28. Lane R. S., Fu Y., Matsuzaki S. et al. Mitochondrial respiration and redox coupling in articular chondrocytes. Arthritis Res Ther. 2015 Mar 10; 17(1): 54. DOI: 10. 1186/s13075-015-0566-9.
  29. Bao C., Zhu S., Song K., He C. HK2: a potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways. Cell Commun Signal. 2022 Aug 30; 20(1): 132. DOI: 10. 1186/s12964-022-00943-y.
  30. Lee R. B., Urban J. P. Evidence for a negative Pasteur effect in articular cartilage. Biochem J. 1997 Jan 1; 321(Pt 1): 95–102. DOI: 10. 1042/bj3210095.
  31. Yang X., Jiang Q., Luan T. et al. Pyruvate Dehydrogenase Kinase 1 inhibition mediated oxidative phosphorylation enhancement in cartilage promotes osteoarthritis progression. BMC Musculoskelet Disord. 2023 Jul 20; 24(1): 597. DOI: 10. 1186/s12891-023-06585-6.
  32. Zheng L., Zhang Z., Sheng P., Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 2021 Mar; 66: 101249. DOI: 10. 1016/j. arr. 2020. 101249.
  33. Stauch B., Johansson L. C., Cherezov V. Structural insights into melatonin receptors. FEBS J. 2020 Apr; 287(8): 1496–1510. DOI: 10. 1111/febs. 15128.
  34. Abdelmoez A. M., Dmytriyeva O., Zurke Y. X. et al. Cell selectivity in succinate receptor SUCNR1/GPR91 signaling in skeletal muscle. Am J Physiol Endocrinol Metab. 2023 Apr 1; 324(4): E289–E298. DOI: 10. 1152/ajpendo. 00009. 2023.
  35. Sanchez M., Hamel D., Bajon E. et al. The Succinate Re-ceptor SUCNR1 Resides at the Endoplasmic Reticulum and Relocates to the Plasma Membrane in Hypoxic Conditions. Cells. 2022 Jul 13; 11(14): 2185. DOI: 10. 3390/cells11142185.
  36. Wang P., Sun X., Wang N. et al. Melatonin enhances the occurrence of autophagy induced by oxidative stress in Arabidopsis seedlings. J Pineal Res. 2015 May; 58(4): 479–489. DOI: 10. 1111/jpi. 12233.
  37. Littlewood-Evans A., Sarret S., Apfel V. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med. 2016; 213(9): 1655–1662. DOI:10. 1084/jem. 20160061.
  38. Шодиев Д. Р., Звягина В. И., Рябова М. Н., Марсянова Ю. А. Сукцинат-рецепторная системакостно-хрящевой ткани у пациентов с метаболическим фенотипом остеоартрита. Вопросы биологической, медицинской и фармацев-тической химии. 2024; 27(4): 42–49. [Shodiev D. R., Zvyagina V. I., Ryabova M. N., Marsyanova Y. A. Succinate-receptor system of bone and cartilage tissue in patients with metabolic phenotype of osteoarthritis. Problems of biological, medical and pharmaceutical chemistry. 2024;27(4):4249. (In Russ.)]. DOI: 10. 29296/25877313-2024-04-06
  39. Mehta O., Vijay A., Gohir S. A. et al. Serum metabolome analysis identified amino-acid metabolism associated with pain in people with symptomatic knee osteoarthritis - a cross-sectional study. J Pain. 2023; 24(7): 1251–1261.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Amount of SUCNR1 and succinate in chondrocyte cells after exposure to 100 and 500 μM melatonin for 24 hours; ns – p ≥ 0,05

Download (43KB)
3. Fig. 2. Amount of SUCNR1 and succinate in chondrocyte cells after exposure to H₂O₂ 200 μM for 12 hours; ** – p <0,01

Download (44KB)
4. Fig. 3. Amount of SUCNR1 and succinate in chondrocyte cells after exposure of cells pre-treated with melatonin to H₂O₂ 200 μM for 12 hours; ns – p ≥0,05; * – p <0,05; ** – p <0,01

Download (36KB)
5. Fig. 4. Amount of SUCNR1 and succinate in chondrocyte cells after exposure to H₂O₂ 200 μM for 12 hours on cells pre-treated with melatonin in comparison with the initial values; ns – p ≥0,05; ** – p <0,01

Download (48KB)

Copyright (c) 2024 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies