Using squalene to develop effective medicines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Squalene is a natural organic compound obtained from various sources, for example, deep-sea shark liver oil, vegetable raw materials and oils. It is contained in the human body, being a precursor for the cholesterol synthesis, as well as in plants, being an intermediate in the synthesis of sterols, which are important for maintaining the cell membranes. Recently, the significant raise of interest in relation to this compound has been shown due to its properties and various ways of utilization in medicine.

This article summarizes the numerous features of squalene, examines the potential manners of using squalene as the component of effective medicines.

One of the main advantages of squalene is its antioxidant properties, which help to protect the cells from damage caused by reactive oxygen species, which plays a significant role in the prevention of various diseases, including cardiovascular and oncological ones. In addition, squalene is able to reduce inflammation in the organism because it has an influence on the inflammatory reactions. Its moisturizing properties make it to be a promising component for dermatological medications, squalene is used to treat skin diseases such as eczema and psoriasis, it helps to alleviate symptoms and restore the protective skin functions. Some studies have examined the potential of squalene as an immunostimulant that helps the organism struggle infections and inflammation more effectively. In addition to this, squalene possesses antibacterial properties, which has been demonstrated by several types of microorganisms in various works.

Nowadays, squalene is commercially used only as an adjuvant for vaccines and as an active component for some cosmetic products, however, the prospects for its use as a substance for antitumor medicines are carefully studied, also squalene can be the constituent of the delivering systems for active substances and it can be considered as an excipient ingredient for increasing bioavailability in preparations for topical and external application.

Full Text

Restricted Access

About the authors

Yu. A. Koroleva

MIREA — Russian Technological University

Author for correspondence.
Email: jukka.hiden@bk.ru
ORCID iD: 0000-0001-8092-1990
SPIN-code: 5517-8014

Post-graduate Student, Department of Biotechnology and Industrial Pharmacy

Russian Federation, Vernadsky Avenue, 78, Moscow, 119454

D. D. Kirillova

MIREA — Russian Technological University; LLC Scientific and Production Enterprise ASTROCYTE

Email: tabletka757@mail.ru
ORCID iD: 0000-0002-3055-1116
SPIN-code: 8996-2103

Post-graduate Student, Department of Biotechnology and Industrial Pharmacy

Russian Federation, Vernadsky Avenue, 78, Moscow, 119454; Rogova str., 12, Moscow, ext.ter.g. Shchukino Municipal District, 123098

S. G. Kuvakin

MIREA — Russian Technological University

Email: pharmacevt991@yandex.ru
ORCID iD: 0009-0003-4471-3432
Scopus Author ID: 3124-8795

Post-graduate Student, Y.K. Syrkin Department of Physical Chemistry

Russian Federation, Vernadsky Avenue, 78, Moscow, 119454

D. D. Putenikhina

MIREA — Russian Technological University

Email: dasha.putenikhina@mail.ru
ORCID iD: 0009-0009-5269-0385
SPIN-code: 4239-8011

Student, Department of Biotechnology and Industrial Pharmacy

Russian Federation, Vernadsky Avenue, 78, Moscow, 119454

A. V. Nikulin

MIREA — Russian Technological University

Email: alexander_sinus@mail.ru
ORCID iD: 0009-0004-2755-2734
SPIN-code: 8611-5567

Associate Professor of the Department of Analytical Chemistry named after I.P. Alimarin

Russian Federation, Vernadsky Avenue, 78, Moscow, 119454

A. I. Gromakova

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: a_gromakova@mail.ru
ORCID iD: 0000-0001-8984-0724
SPIN-code: 2091-5820

Dr.Sc. (Pharm.), Chief Research Scientist, Scientific and Organizational Department

Russian Federation, Green Street 7 building 1, Moscow, 117216

D. O. Shatalov

MIREA — Russian Technological University

Email: shat-05@mail.ru
ORCID iD: 0000-0003-4510-1721
SPIN-code: 3453-9987

Dr.Sc. (Pharm.), Associate Professor of the Department of Biotechnology and Industrial Pharmacy

Russian Federation, Vernadsky Avenue, 78, Moscow, 119454

References

  1. Micera M., Botto A., Geddo F. et al. Squalene: More than a Step toward Sterols. Antioxidants. 2020; 9(8): 688. doi: 10.3390/antiox9080688.
  2. Basim S.A. Al Sulivany, Husni A. Mhammad. Squalene exploring its vital roles in vaccine production, skin care, cholesterol metabolism, anticancer strategies, cardiovascular health, and antioxidant potency. Bulletin of Pharmaceutical Sciences. 2024; 47(1): 437–448.
  3. Ibrahim N‘I, Naina Mohamed I. Interdependence of Anti-Inflammatory and Antioxidant Properties of Squalene–Implication for Cardiovascular Health. Life. 2021; 11(2):103. doi: 10.3390/life11020103.
  4. Xinran Yin, Wenqian Wei, Qihang Chen et al. Reengineering the Substrate Tunnel to Enhance the Catalytic Efficiency of Squalene Epoxidase. Journal of Agricultural and Food Chemistry. 2024; 72 (44): 24599–24608. doi: 10.1021/acs.jafc.4c05892.
  5. Du X., Ma X., Gao Y. The physiological function of squalene and its application prospects in animal husbandry. Front Vet Sci. 2024; 10: 1284500. doi: 10.3389/fvets.2023.1284500.
  6. Fiume M., Bergfeld W. F., Belsito D. V. et al. Squalane and Squalene. International journal of toxicology. 2023; 42(3_suppl): 107S–109S. doi: 10.1177/10915818231204276.
  7. Dardouri N.E., Hrichi S., Torres P. et al. Characterization, X-ray Molecular Structure, Antioxidant, Antifungal, and Allelopathic Activity of a New Isonicotinate-Derived meso-Tetraarylporphyrin. Molecules. 2024; 29(13): 3163. doi: 10.3390/molecules29133163.
  8. Dalawai D., Murthy H.N., Dewir Y.H. et al. Phytochemical Composition, Bioactive Compounds, and Antioxidant Properties of Different Parts of Andrographis macrobotrys Nees. Life. 2023; 13(5): 1166. doi: 10.3390/life13051166.
  9. Felices M.J., Escusol S., Martinez-Beamonte R. et al. LPS-squalene interaction on D-galactose intestinal absorption. J Physiol Biochem. 2019; 75: 329–340. doi: 10.1007/s13105-019-00682-8.
  10. Fan Z., Zhang Y., Jiao L. et al. Lycium barbarum polysaccharides-loaded Particulate Alum via Pickering emulsion as an adjuvant to enhance immune responses. Int J Pharm. 2023; 630: 122418. doi: 10.1016/j.ijpharm.2022.122418.
  11. Herrera-Marcos L.V., Martínez-Beamonte R., Arnal C. et al. Dietary squalene supplementation decreases triglyceride species and modifies phospholipid lipidomic profile in the liver of a porcine model of non-alcoholic steatohepatitis. J Nutr Biochem. 2023; 112: 109207. doi: 10.1016/j.jnutbio.2022.109207.
  12. Gohil N., Bhattacharjee G., Khambhati K. et al. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol. 2019; 7: 50. doi: 10.3389/fbioe.2019.00050.
  13. Gjin Ndrepepa. Myeloperoxidase – A bridge linking inflammation and oxidative stress with cardiovascular disease. Clinica Chimica Acta. 2019; 493: 36–51. doi: 10.1016/j.cca.2019.02.022.
  14. Bidooki S.H., Alejo T., Sánchez-Marco J. et al. Squalene Loaded Nanoparticles Effectively Protect Hepatic AML12 Cell Lines against Oxidative and Endoplasmic Reticulum Stress in a TXNDC5-Dependent Way. Antioxidants (Basel). 2022; 11(3): 581. doi: 10.3390/antiox11030581.
  15. Zhang Y., Zhu .T, Xu S. et al. Cationic Nanoparticle-Stabilized Vaccine Delivery System for the H9N2 Vaccine to Promote Immune Response in Chickens. Mol Pharm. 2023;20(3):1613-1623. doi: 10.1021/acs.molpharmaceut.2c00805.
  16. Nurfatimah R., Ahmadi Kgs., Hapsari I. et al. Separation of squalene rich fraction from palm oil fatty acid distillate (PFAD): A review. IOP Conference Series: Earth and Environmental Science. 2021; 733: 012094. doi: 10.1088/1755-1315/733/1/012094.
  17. Navarro Chica C.E., de Haan B.J., Faas M.M. et al. Design and characterization of Squalene-Gusperimus nanoparticles for modulation of innate immunity. Int J Pharm. 2020; 590: 119893. doi: 10.1016/j.ijpharm.2020.119893.
  18. Karl J. Fisher, Robert Kinsey, Raodoh Mohamath et al. Semi-synthetic terpenoids with differential adjuvant properties as sustainable replacements for shark squalene in vaccine emulsions. npj. Vaccines. 2023; 8 (1). doi: 10.1038/s41541-023-00608-y.
  19. Nguyen-Contant P., Sangster M.Y., Topham D.J. Squalene-Based Influenza Vaccine Adjuvants and Their Impact on the Hemagglutinin-Specific B Cell Response. Pathogens. 2021; 10(3): 355. doi: 10.3390/pathogens10030355.
  20. Morgan N.R., Magalingam K.B., Radhakrishnan A.K. et al. Explicating the multifunctional roles of tocotrienol and squalene in promoting skin health. Skin Health Dis. 2024; 4(5): 448. doi: 10.1002/ski2.448.
  21. Mendes A., Azevedo-Silva J., Fernandes J.C. From Sharks to Yeasts: Squalene in the Development of Vaccine Adjuvants. Pharmaceuticals. 2022; 15(3): 265. doi: 10.3390/ph15030265.
  22. Nazemi M., Motallebi A., Abbasi E. et al. Antibacterial, antifungal, and cytotoxic activity of the fraction contains squalene in the acetone extract of a sea cucumber, Stichopus hermanni. Iranian Journal of Fisheries Sciences. 2022; 21(6): 1495–1507. doi: 10.22092/ijfs.2023.128416.
  23. Fang J.Y., Lin Y.K., Wang P.W. et al. The Droplet-Size Effect of Squalene@cetylpyridinium Chloride Nanoemulsions On Antimicrobial Potency Against Planktonic and Biofilm MRSA. Int J Nanomedicine. 2019; 14: 8133–8147. doi: 10.2147/IJN.S221663.
  24. Riscal R., Skuli N., Simon M.C. Even Cancer Cells Watch Their Cholesterol! Mol Cell. 2019; 76(2): 220–231. doi: 10.1016/j.molcel.2019.09.008.
  25. Xia W., Wang H., Zhou X. et al. The role of cholesterol metabolism in tumor therapy, from bench to bed. Front Pharmacol. 2023; 14: 928821. doi: 10.3389/fphar.2023.928821.
  26. Ivan M., Fishel M.L., Tudoran O.M. et al. Hypoxia signaling: Challenges and opportunities for cancer therapy. Semin Cancer Biol. 2022; 85: 185–195. doi: 10.1016/j.semcancer.2021.10.002.
  27. Rajamani K., Thirugnanasambandan S.S., Natesan C. et al. Squalene deters drivers of RCC disease progression beyond VHL status. Cell Biol Toxicol. 2021; 37(4): 611–631. doi: 10.1007/s10565-020-09566-w.
  28. Jun S.Y., Brown A.J., Chua N.K. et al. Reduction of Squalene Epoxidase by Cholesterol Accumulation Accelerates Colorectal Cancer Progression and Metastasis. Gastroenterology. 2021; 160(4): 1194–1207. doi: 10.1053/j.gastro.2020.09.009.
  29. Pei Z.W., Guo Y., Zhu H.L. et al. Thymoquinone Protects against Hyperlipidemia-Induced Cardiac Damage in Low-Density Lipoprotein Receptor-Deficient (LDL-R-/-) Mice via Its Anti-inflammatory and Antipyroptotic Effects. Biomed Res Int. 2020; 2020:4878704. doi: 10.1155/2020/4878704.
  30. Uppin V., Acharya P., Kempaiah B.B., Talahalli R.R. Zerumbone augments cognitive enhancement potentials of EPA+DHA: insight from a hyperlipidaemic rat model. Br J Nutr. 2020; 124(12): 1353–1360. doi: 10.1017/S0007114520002445.
  31. Chiang S.S., Chen L.S., Chu C.Y. Active food ingredients production from cold pressed processing residues of Camellia oleifera and Camellia sinensis seeds for regulation of blood pressure and vascular function. Chemosphere. 2021; 267: 129267. doi: 10.1016/j.chemosphere.2020.129267.
  32. Xu Q., Luo M., Cheng G. et al. Combining effect of camellia oil and squalene on hyperlipidemia-induced reproductive damage in male rats. Front Nutr. 2022; 9: 1053315. doi: 10.3389/fnut.2022.1053315.
  33. Ganbold M., Ferdousi F., Arimura T. et al. New Amphiphilic Squalene Derivative Improves Metabolism of Adipocytes Differentiated From Diabetic Adipose-Derived Stem Cells and Prevents Excessive Lipogenesis. Front Cell Dev Biol. 2020; 8: 577259. doi: 10.3389/fcell.2020.577259.
  34. Hong Z., Liu T., Wan L. et al. Targeting Squalene Epoxidase Interrupts Homologous Recombination via the ER Stress Response and Promotes Radiotherapy Efficacy. Cancer Res. 2022; 82(7): 1298–1312. doi: 10.1158/0008-5472. CAN-21-2229.
  35. Nguyen-Contant P., Sangster M.Y., Topham D.J. Squalene-Based Influenza Vaccine Adjuvants and Their Impact on the Hemagglutinin-Specific B Cell Response. Pathogens. 2021; 10(3): 355. doi: 10.3390/pathogens10030355.
  36. Le Cheng, Tengteng Ji, Ming Zhang, Bing Fang. Recent advances in squalene: Biological activities, sources, extraction, and delivery systems. Trends in Food Science & Technology. 2024; 146: 104392. doi: 10.1016/j.tifs.2024.104392.
  37. Холиков К.Б. Эффективное действия сквалан углеводород тритерпенового ряда и амаранта к заболеваниям рака, опухоли. Science and Education. 2024; 5 (2): 27–32 [Kholikov K.B. Effective action of squalene, a hydrocarbon of the triterpene series and amaranth to cancer and tumor diseases. Science and Education. 2024; 5 (2): 27–32. (In Russ.)].
  38. Zhang Y., Bejaoui M., Linh T.N., Arimura T., Isoda H. A novel amphiphilic squalene-based compound with open-chain polyethers reduces malignant melanoma metastasis in vitro and in vivo. Cell Commun Signal. 2024; 22(1): 437. doi: 10.1186/s12964-024-01813-5.
  39. Brusini R., Dormont F., Cailleau C. et al. Squalene-based nanoparticles for the targeting of atherosclerotic lesions. Int J Pharm. 2020; 581: 119282. doi: 10.1016/j.ijpharm.2020.119282.
  40. Linh Tran, Arimura Takashi, Tominaga Kenichi et al. Syntheses and aggregation properties of new squalene receptors bearing open chain ligands. Supramolecular Chemistry. 2021; 33: 1–8. doi: 10.1080/10610278.2021.1970161.
  41. Li-Juan Deng, Ming Qi, Nan Li et al. Natural products and their derivatives: Promising modulators of tumor immunotherapy. Journal of Leukocyte Biology. 2020; 108(2): 493–508. doi: 10.1002/JLB.3MR0320-444R.
  42. Linh T.N., Arimura T., Tominaga, K. et al. Syntheses and aggregation properties of new squalene receptors bearing open chain ligands. Supramolecular Chemistry. 2021; 33(5): 194–201. doi: 10.1080/10610278.2021.1970161.
  43. Paramasivan K., Mutturi S. Recent advances in the microbial production of squalene. World J Microbiol Biotechnol. 2022; 38(5): 91. doi: 10.1007/s11274-022-03273-w.
  44. Khalifa S., Enomoto M., Kato S., Nakagawa K. Novel photoinduced squalene cyclic peroxide identified, detected, and quantified in human skin surface lipids. Antioxidants. 2021; 10(11): 1760. doi: 10.3390/ANTIOX10111760.
  45. Shanmugarajan T.S., Selvan N.K. Uppuluri V.N.V.A. Development and Characterization of Squalene-Loaded Topical Agar-Based Emulgel Scaffold: Wound Healing Potential in Full-Thickness Burn Model. The International Journal of Lower Extremity Wounds. 2021; 20(4): 364–373. doi: 10.1177/1534734620921629.
  46. Gref R., Deloménie C., Maksimenko A. et al. Vitamin C–squalene bioconjugate promotes epidermal thickening and collagen production in human skin. Sci Rep. 2020; 10: 16883. doi: 10.1038/s41598-020-72704-1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Squalene structure types: A – sterol-like form 1; B – sterol-like form 2; B – helical form; G – extended form

Download (59KB)

Copyright (c) 2025 Russkiy Vrach Publishing House