Endolysins and prospects of their use for the treatment of infections caused by polyresistent bacteria (review)
- Authors: Vorobev A.M1, Anurova M.N2, Aleshkin A.V1, Kiseleva I.A1, Bagandova K.M1, Mizaeva T.E1, Vasina D.V3, Antonova N.P3, Gushchin V.A3
-
Affiliations:
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology
- Sechenov First State Medical Universasity
- Gamaleya State Research Center for Epidemiology and Microbiology
- Issue: Vol 24, No 10 (2021)
- Pages: 13-22
- Section: Articles
- URL: https://journals.eco-vector.com/1560-9596/article/view/112887
- DOI: https://doi.org/10.29296/25877313-2021-10-02
- ID: 112887
Cite item
Abstract
Keywords
Full Text

About the authors
A. M Vorobev
G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology
Email: vorobjew.alex2010@yandex.ru
Post-graduate Student, Junior Research Scientist, Laboratory of Clinical Microbiology and Bacteriophage Biotechnology Moscow, Russia
M. N Anurova
Sechenov First State Medical UniversasityPh.D. (Pharm.) Moscow, Russia
A. V Aleshkin
G.N. Gabrichevsky Research Institute for Epidemiology and MicrobiologyDr.Sc. (Biol.), Professor of the Russian Academy of Sciences Moscow, Russia
I. A Kiseleva
G.N. Gabrichevsky Research Institute for Epidemiology and MicrobiologyPh.D. (Biol.), Senior Research Scientist, Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages Moscow, Russia
K. M Bagandova
G.N. Gabrichevsky Research Institute for Epidemiology and MicrobiologyPost-graduate Student, Junior Research Scientist, Laboratory of Clinical Microbiology and Bacteriophage Biotechnology Moscow, Russia
T. E Mizaeva
G.N. Gabrichevsky Research Institute for Epidemiology and MicrobiologyPost-graduate Student, Junior Research Scientist, Laboratory of Clinical Microbiology and Bacteriophage Biotechnology Moscow, Russia
D. V Vasina
Gamaleya State Research Center for Epidemiology and MicrobiologyPh.D. (Biol.), Senior Research Scientist Moscow, Russia
N. P Antonova
Gamaleya State Research Center for Epidemiology and MicrobiologyResearch Scientist Moscow, Russia
V. A Gushchin
Gamaleya State Research Center for Epidemiology and MicrobiologyPh.D. (Biol.) Moscow, Russia
References
- Габриэлян Н.И., Шарапченко С.О., Кисиль О.В. Кормилицина В.Г. Драбкина И.В., Сафонова Т.Б., Петрухина М.И., Оаитгареев Р.Ш., Захаревич В.М. Вопросы эпидемиологии в проблеме антибиотикорезистентности клинических патогенов. Медицинский алфавит. 2020; (34): 6-8. https://doi.org/10.33667/2078-5631-2020-34-6-8.
- Устойчивость к противомикробным препаратам [Электронный ресурс]. ВОЗ. 2020. 13 октября. URL: https://www.who.int/ru/news-room/fact-sheets/detail/antimic-robial-resistance (Дата обращения: 11.02.2021).
- La Fauci V., Costa G.B., Arena A., et al. Trend of MDR-microorganisms isolated from the biological samples of patients with HAI and from the surfaces around that patient. New Microbiol. 2018; 41(1): 42-46.
- Lack of new antibiotics threatens global efforts to contain drug-resistant infections [Электронный ресурс]. World Health Organization. Geneva, 2020. Режим доступа: https://www.who.int/news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections.
- Иванова И.А, Труфанова А.А., Филиппенко А.В. и др. Бактериофаги и иммунная система макроорганизма. Журнал микробиологии, эпидемиологии и иммунобиологии. 2019; 6: 79-84; doi: 10.36233/0372-9311-2019-6-79-85.
- Бочкарева С.С., Алешкин А.В., Ершова О.Н. и др. Иммунологические аспекты фаготерапии инфекций, связанных с оказанием медицинской помощи, в отделении нейрореанимации. Журнал микробиологии. 2017; 4: 42-48.
- Olsen N.M.C., Thiran E., Hasler T., et al. Synergistic removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses. 2018; 10(8): pii: E438; doi: 10.3390/v10080438.
- Тец В.В., Тец Г.В. Микробные биопленки и проблемы антибиотикотерапии. Практическая пульмонология. 2013; 4: 60-64.
- Kovalskaya N.Y., Herndon E.E., Foster-Frey J.A., et al. Antimicrobial activity of bacteriophage derived triple fusion protein against Staphylococcus aureus [J]. AIMS Microbiology. 2019; 5(2): 158-175; doi: 10.3934/microbiol.2019.2.158.
- Schmelcher Mathias, Donovan David M., and Loessner Martin J. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012 October; 7(10): 1147-1171. doi: 10.2217/fmb.12.97.
- Loessner M.J., Wendlinger G., Scherer S. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol. Microbiol. 1995; 16(6): 1231-1241.
- Zimmer M., Sattelberger E., Inman R.B., Calendar R., Loessner M.J. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Mol. Microbiol. 2003; 50(1): 303-317.
- Zhou B., Zhen X., Zhou H., Zhao F., Fan C., Perculija V., et al. Structural and functional insights into a novel two-component endolysin encoded by a single gene in Enterococ-cus faecalis phage. PLoSPathog. 2020; 16(3): e1008394. https://doi.org/10.1371/journal.ppat.1008394.
- Swift Steven M., Etobayeva Irina V., et al. Characterization of LysBC17, a Lytic Endopeptidase from Bacillus cereus. Antibiotics. 2019; 8(3): 155; doi: 10.3390/antibiotics8030155
- Ko On Lee, Minsuk Kong, et al. Structural Basis for Cell-Wall Recognition by Bacteriophage PBC5 Endolysin. Structure. 2019; 27(9): 1355-1365. doi: 10.1016/j.str.2019.07.001.
- O’Flaherty S., Coffey, et al. The Recombinant Phage Lysin LysK Has a Broad Spectrum of Lytic Activity against Clinically Relevant Staphylococci, Including Methicillin-Resistant Staphylococcus aureus. Journal of Bacteriology. 2005; 187(20): 7161-7164; doi: 10.1128/jb.187.20.7161-7164.2005.
- Pritchard D.G. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology. 2004; 150(7): 2079-2087; doi: 10.1099/mic.0.27063-0.
- Pritchard D.G., Dong S., Kirk M.C., Cartee R.T., Baker J.R. LambdaSa1 and lambdaSa2 prophage lysins of Streptococcus agalactiae. Appl. Environ. Microbiol. 2007; 73(22): 7150-7154.
- Loessner M.J., Kramer K., Ebel F., Scherer S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol. Microbiol. 2002 Apr; 44(2): 335-49; doi: 10.1046/j.1365-2958.2002.02889.x.
- Hermoso J.A., Garcia J.L., Garcia P. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr. Opin. Microbiol. 2007; 10(5): 461-472.
- Lopez R., Garcia E. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol. Rev. 2004; 28(5): 553-580.
- Gu J., Lu R., Liu X, et al. LysGH15B, the SH3b domain of staphylococcal phage endolysinLysGH15, retains high affinity to staphylococci. Curr. Microbiol. 2011; 63(6): 538-542.
- Fraga A.G., Trigo G., Murthy R.K., Akhtar S., Hebbur M., et al. Antimicrobial activity of Mycobacteriophage D29 Lysin B during Mycobacterium ulcerans infection. PLOS Neglected Tropical Diseases. 2019; 13(8): e0007113. doi: 10.1371/journal.pntd.0007113.
- Park S., Jun S.Y., Kim C.H., et al. Characterisation of the antibacterial properties of the recombinant phage endolysins AP50-31 and LysB4 as potent bactericidal agents against Bacillus anthracis. Sci. Rep. 2018; 8(18); doi: 10.1038/s41598- 017-18535-z.
- Sozhamannan S., McKinstry M., Lentz S.M., et al. Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. Appl Environ Microbiol. 2008; 74(21): 6792-6796; doi: 10.1128/AEM.01124-08.
- Yu J.H., Lim J.A., Chang H.J., Park J.H. Characteristics and Lytic Activity of Phage-Derived Peptidoglycan Hydrolase, LysSAP8, as a Potent Alternative Biocontrol Agent for Staphylococcus aureus. J. Microbiol. Biotechnol. 2019; 29: 1916-1924; doi: 10.4014/jmb.1908.08021.
- Kim S., Kim S.H., Rahman M., et al. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria. J. Microbiol. 2018; 56: 917-925; doi: 10.1007/s12275-018-8310-1.
- Shukho Kim, Da-Won Lee, Jong-Sook Jin, Jungmin Kim. Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of Global Antimicrobial Resistance. 2020; 22: 32-39; doi: 10.1016/j.jgar.2020.01.005.
- Plotka M., Kapusta M., Dorawa S., Kaczorowska A.-K., Kaczorowski T. Ts2631 Endolysin from the Extremophilic Ther-mus scotoductus Bacteriophage vB_Tsc2631 as an Antimicrobial Agent against Gram-Negative Multidrug-Resistant Bacteria. Viruses. 2019; 11: 657; doi: 10.3390/v11070657.
- Wang F., Ji X., et al. TSPphg Lysin from the Extremophilic Thermus Bacteriophage TSP4 as a Potential Antimicrobial Agent against Both Gram-Negative and Gram-Positive Pathogenic Bacteria. Viruses. 2020. 12(2): 192; doi: 10.3390/v12020192.
- Воробьев А.М., Анурова М.Н., Алешкин А.В. и др. Определение спектра бактерицидной активности рекомбинантных эндолизинов бактериофагов ECD7, Am24, Ap22, Si3 и St11. Бюллетень экспериментальной биологии и медицины. 2020; 170(11): 597-601; doi: 10.47056/0365-9615 2020-170-11-597-601.
- Fursov M.V., Abdrakhmanova R.O., Antonova N.P., et al. Antibiofilm Activity of a Broad-Range Recombinant Endolysin LysECD7: In Vitro and In Vivo Study. Viruses. 2020; 12(5): 545. https://doi.org/10.3390/v12050545.
- Schuch Raymond, Pelzek J. Adam, Nelson C. Daniel, Fischettia A. Vincent. The PlyB Endolysin of Bacteriophage vB_BanS_Bcp1 Exhibits Broad-Spectrum Bactericidal Activity against Bacillus cereus Sensu Lato Isolates. Applied and Environmental Microbiology. 2019; 85(9): e00003-19; doi: 10.1128/AEM.00003-19.
- Schuch R., Nelson D., Fischetti V. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature. 2002; 418: 884-889; doi: 10.1038/nature01026.
Supplementary files
