Endolysins and prospects of their use for the treatment of infections caused by polyresistent bacteria (review)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The rapid increase in the incidence of multidrug-resistant pathogens poses an important task for the scientific community to find new ways to combat such pathogens. This increase is due to the widespread use of antibiotics of the main pharmacological groups for the treatment of infectious diseases against the backdrop of the ongoing COVID-19 epidemic. One of the promising directions in this area is bacteriophages due to their effectiveness against resistant pathogens and safety of use. Nevertheless, bacteriophages have a number of limitations that hinder their widespread use. In this regard, studies of endolysins - enzymes synthesized at the end of the lytic cycle of bacteriophages and destroying the bacterial cell wall - are being increasingly actively pursued. This article describes the characteristics of endolysins, their classification and advantages in comparison with antibiotics and bacteriophages. The descriptions of research carried out in the world in the field of obtaining endolysin preparations are given. Developments for the production of mono-and combined endolysins for the treatment of a number of bacterial infections are described. The effectiveness of this approach for the treatment of infections, including those caused by multidrug-resistant pathogens, and the prospects for further work in this direction are shown.

Full Text

Restricted Access

About the authors

A. M Vorobev

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Email: vorobjew.alex2010@yandex.ru
Post-graduate Student, Junior Research Scientist, Laboratory of Clinical Microbiology and Bacteriophage Biotechnology Moscow, Russia

M. N Anurova

Sechenov First State Medical Universasity

Ph.D. (Pharm.) Moscow, Russia

A. V Aleshkin

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Dr.Sc. (Biol.), Professor of the Russian Academy of Sciences Moscow, Russia

I. A Kiseleva

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Ph.D. (Biol.), Senior Research Scientist, Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages Moscow, Russia

K. M Bagandova

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Post-graduate Student, Junior Research Scientist, Laboratory of Clinical Microbiology and Bacteriophage Biotechnology Moscow, Russia

T. E Mizaeva

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Post-graduate Student, Junior Research Scientist, Laboratory of Clinical Microbiology and Bacteriophage Biotechnology Moscow, Russia

D. V Vasina

Gamaleya State Research Center for Epidemiology and Microbiology

Ph.D. (Biol.), Senior Research Scientist Moscow, Russia

N. P Antonova

Gamaleya State Research Center for Epidemiology and Microbiology

Research Scientist Moscow, Russia

V. A Gushchin

Gamaleya State Research Center for Epidemiology and Microbiology

Ph.D. (Biol.) Moscow, Russia

References

  1. Габриэлян Н.И., Шарапченко С.О., Кисиль О.В. Кормилицина В.Г. Драбкина И.В., Сафонова Т.Б., Петрухина М.И., Оаитгареев Р.Ш., Захаревич В.М. Вопросы эпидемиологии в проблеме антибиотикорезистентности клинических патогенов. Медицинский алфавит. 2020; (34): 6-8. https://doi.org/10.33667/2078-5631-2020-34-6-8.
  2. Устойчивость к противомикробным препаратам [Электронный ресурс]. ВОЗ. 2020. 13 октября. URL: https://www.who.int/ru/news-room/fact-sheets/detail/antimic-robial-resistance (Дата обращения: 11.02.2021).
  3. La Fauci V., Costa G.B., Arena A., et al. Trend of MDR-microorganisms isolated from the biological samples of patients with HAI and from the surfaces around that patient. New Microbiol. 2018; 41(1): 42-46.
  4. Lack of new antibiotics threatens global efforts to contain drug-resistant infections [Электронный ресурс]. World Health Organization. Geneva, 2020. Режим доступа: https://www.who.int/news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections.
  5. Иванова И.А, Труфанова А.А., Филиппенко А.В. и др. Бактериофаги и иммунная система макроорганизма. Журнал микробиологии, эпидемиологии и иммунобиологии. 2019; 6: 79-84; doi: 10.36233/0372-9311-2019-6-79-85.
  6. Бочкарева С.С., Алешкин А.В., Ершова О.Н. и др. Иммунологические аспекты фаготерапии инфекций, связанных с оказанием медицинской помощи, в отделении нейрореанимации. Журнал микробиологии. 2017; 4: 42-48.
  7. Olsen N.M.C., Thiran E., Hasler T., et al. Synergistic removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses. 2018; 10(8): pii: E438; doi: 10.3390/v10080438.
  8. Тец В.В., Тец Г.В. Микробные биопленки и проблемы антибиотикотерапии. Практическая пульмонология. 2013; 4: 60-64.
  9. Kovalskaya N.Y., Herndon E.E., Foster-Frey J.A., et al. Antimicrobial activity of bacteriophage derived triple fusion protein against Staphylococcus aureus [J]. AIMS Microbiology. 2019; 5(2): 158-175; doi: 10.3934/microbiol.2019.2.158.
  10. Schmelcher Mathias, Donovan David M., and Loessner Martin J. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012 October; 7(10): 1147-1171. doi: 10.2217/fmb.12.97.
  11. Loessner M.J., Wendlinger G., Scherer S. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol. Microbiol. 1995; 16(6): 1231-1241.
  12. Zimmer M., Sattelberger E., Inman R.B., Calendar R., Loessner M.J. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Mol. Microbiol. 2003; 50(1): 303-317.
  13. Zhou B., Zhen X., Zhou H., Zhao F., Fan C., Perculija V., et al. Structural and functional insights into a novel two-component endolysin encoded by a single gene in Enterococ-cus faecalis phage. PLoSPathog. 2020; 16(3): e1008394. https://doi.org/10.1371/journal.ppat.1008394.
  14. Swift Steven M., Etobayeva Irina V., et al. Characterization of LysBC17, a Lytic Endopeptidase from Bacillus cereus. Antibiotics. 2019; 8(3): 155; doi: 10.3390/antibiotics8030155
  15. Ko On Lee, Minsuk Kong, et al. Structural Basis for Cell-Wall Recognition by Bacteriophage PBC5 Endolysin. Structure. 2019; 27(9): 1355-1365. doi: 10.1016/j.str.2019.07.001.
  16. O’Flaherty S., Coffey, et al. The Recombinant Phage Lysin LysK Has a Broad Spectrum of Lytic Activity against Clinically Relevant Staphylococci, Including Methicillin-Resistant Staphylococcus aureus. Journal of Bacteriology. 2005; 187(20): 7161-7164; doi: 10.1128/jb.187.20.7161-7164.2005.
  17. Pritchard D.G. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology. 2004; 150(7): 2079-2087; doi: 10.1099/mic.0.27063-0.
  18. Pritchard D.G., Dong S., Kirk M.C., Cartee R.T., Baker J.R. LambdaSa1 and lambdaSa2 prophage lysins of Streptococcus agalactiae. Appl. Environ. Microbiol. 2007; 73(22): 7150-7154.
  19. Loessner M.J., Kramer K., Ebel F., Scherer S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol. Microbiol. 2002 Apr; 44(2): 335-49; doi: 10.1046/j.1365-2958.2002.02889.x.
  20. Hermoso J.A., Garcia J.L., Garcia P. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr. Opin. Microbiol. 2007; 10(5): 461-472.
  21. Lopez R., Garcia E. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol. Rev. 2004; 28(5): 553-580.
  22. Gu J., Lu R., Liu X, et al. LysGH15B, the SH3b domain of staphylococcal phage endolysinLysGH15, retains high affinity to staphylococci. Curr. Microbiol. 2011; 63(6): 538-542.
  23. Fraga A.G., Trigo G., Murthy R.K., Akhtar S., Hebbur M., et al. Antimicrobial activity of Mycobacteriophage D29 Lysin B during Mycobacterium ulcerans infection. PLOS Neglected Tropical Diseases. 2019; 13(8): e0007113. doi: 10.1371/journal.pntd.0007113.
  24. Park S., Jun S.Y., Kim C.H., et al. Characterisation of the antibacterial properties of the recombinant phage endolysins AP50-31 and LysB4 as potent bactericidal agents against Bacillus anthracis. Sci. Rep. 2018; 8(18); doi: 10.1038/s41598- 017-18535-z.
  25. Sozhamannan S., McKinstry M., Lentz S.M., et al. Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. Appl Environ Microbiol. 2008; 74(21): 6792-6796; doi: 10.1128/AEM.01124-08.
  26. Yu J.H., Lim J.A., Chang H.J., Park J.H. Characteristics and Lytic Activity of Phage-Derived Peptidoglycan Hydrolase, LysSAP8, as a Potent Alternative Biocontrol Agent for Staphylococcus aureus. J. Microbiol. Biotechnol. 2019; 29: 1916-1924; doi: 10.4014/jmb.1908.08021.
  27. Kim S., Kim S.H., Rahman M., et al. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria. J. Microbiol. 2018; 56: 917-925; doi: 10.1007/s12275-018-8310-1.
  28. Shukho Kim, Da-Won Lee, Jong-Sook Jin, Jungmin Kim. Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of Global Antimicrobial Resistance. 2020; 22: 32-39; doi: 10.1016/j.jgar.2020.01.005.
  29. Plotka M., Kapusta M., Dorawa S., Kaczorowska A.-K., Kaczorowski T. Ts2631 Endolysin from the Extremophilic Ther-mus scotoductus Bacteriophage vB_Tsc2631 as an Antimicrobial Agent against Gram-Negative Multidrug-Resistant Bacteria. Viruses. 2019; 11: 657; doi: 10.3390/v11070657.
  30. Wang F., Ji X., et al. TSPphg Lysin from the Extremophilic Thermus Bacteriophage TSP4 as a Potential Antimicrobial Agent against Both Gram-Negative and Gram-Positive Pathogenic Bacteria. Viruses. 2020. 12(2): 192; doi: 10.3390/v12020192.
  31. Воробьев А.М., Анурова М.Н., Алешкин А.В. и др. Определение спектра бактерицидной активности рекомбинантных эндолизинов бактериофагов ECD7, Am24, Ap22, Si3 и St11. Бюллетень экспериментальной биологии и медицины. 2020; 170(11): 597-601; doi: 10.47056/0365-9615 2020-170-11-597-601.
  32. Fursov M.V., Abdrakhmanova R.O., Antonova N.P., et al. Antibiofilm Activity of a Broad-Range Recombinant Endolysin LysECD7: In Vitro and In Vivo Study. Viruses. 2020; 12(5): 545. https://doi.org/10.3390/v12050545.
  33. Schuch Raymond, Pelzek J. Adam, Nelson C. Daniel, Fischettia A. Vincent. The PlyB Endolysin of Bacteriophage vB_BanS_Bcp1 Exhibits Broad-Spectrum Bactericidal Activity against Bacillus cereus Sensu Lato Isolates. Applied and Environmental Microbiology. 2019; 85(9): e00003-19; doi: 10.1128/AEM.00003-19.
  34. Schuch R., Nelson D., Fischetti V. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature. 2002; 418: 884-889; doi: 10.1038/nature01026.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House