Scientific and methodological approach to the choice of polymeric materials for tissue therapy
- Authors: Kuznetsov А.О.1, Zuryanov О.A.1, Marshalova М.М.1, Migalyev D.A.1, Brkich G.E.1, Pyatigorskaya N.V.1
-
Affiliations:
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- Issue: Vol 28, No 3 (2025)
- Pages: 21-28
- Section: Pharmaceutical chemistry
- URL: https://journals.eco-vector.com/1560-9596/article/view/677701
- DOI: https://doi.org/10.29296/25877313-2025-03-03
- ID: 677701
Cite item
Abstract
Introduction. The idea of using polymeric compositions in medicine that can modulate regeneration phases and directly influence them in order to improve the potential of recovery has found its application in the development of polymer-based compositions for the treatment of tissue damage. A wide range of polymers of natural and synthetic origin allows one to select the composition of the polymer composition or additionally chemically modify it to impart new properties to the material. Currently created wound dressings often do not always allow achieving the expected therapeutic effects, so the task of creating new polymeric compositions is relevant and of great interest in medical society.
The aim of this study is to develop a scientific and methodological approach to expanding the range of polymeric materials for the therapy of wound surfaces.
Material and methods. The development of a scientific and methodological approach for an objective assessment of the prospects for creating polymeric materials for the therapy of wound surfaces was carried out using information retrieval databases (ScienceDirect, Wiley Online Library, PubMed).
Results. Based on the results of the study of information retrieval and library databases, it was found that the main problem arising in the development of polymer compositions is adhesion - the total surface area of the drug contact with the wound increases the effectiveness of therapy due to the complex effect on the entire wound bed. The key parameter in this case is adhesion - the phenomenon of interaction between dissimilar bodies during their intermolecular contact. Polymer compositions can be used to significantly increase the efficiency of regeneration, as well as to create optimal conditions in the wound microenvironment and protection from additional external influences. Biopharmaceutical features and main functional groups of polymeric materials were considered, which should be taken into account when choosing a composition for creating polymer compositions.
Conclusion. The development of a scientific and methodological approach for an objective assessment of the prospects for creating polymeric materials for the therapy of wound surfaces made it possible to formulate the main properties that should be taken into account when choosing the composition of the polymer composition to create a finished product in the therapy of wound surfaces at various stages of healing.
Full Text

About the authors
А. О. Kuznetsov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: chem.kuznetzov@gmail.com
ORCID iD: 0009-0009-2125-1101
SPIN-code: 9437-1452
Master's, Department of Industrial Pharmacy
Russian Federation, st. Trubetskaya, 8, p. 2, Moscow, 119048О. A. Zuryanov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: chem.kuznetzov@gmail.com
ORCID iD: 0000-0001-9038-8720
SPIN-code: 7658-8201
Ph.D. (Pharm.), Associate Professor, Department of Industrial Pharmacy
Russian Federation, st. Trubetskaya, 8, p. 2, Moscow, 119048М. М. Marshalova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: chem.kuznetzov@gmail.com
ORCID iD: 0000-0002-5281-7771
SPIN-code: 9259-3048
Senior Lecturer, Department of Industrial Pharmacy
Russian Federation, st. Trubetskaya, 8, p. 2, Moscow, 119048D. A. Migalyev
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: chem.kuznetzov@gmail.com
ORCID iD: 0009-0004-0938-9195
SPIN-code: 8017-0006
Post-graduate Student
Russian Federation, st. Trubetskaya, 8, p. 2, Moscow, 119048G. E. Brkich
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: chem.kuznetzov@gmail.com
ORCID iD: 0000-0002-3469-9062
SPIN-code: 6677-0344
Dr.Sc. (Pharm.), Professor, Department of Industrial Pharmacy
Russian Federation, st. Trubetskaya, 8, p. 2, Moscow, 119048N. V. Pyatigorskaya
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: chem.kuznetzov@gmail.com
ORCID iD: 0000-0003-4901-4625
SPIN-code: 8128-1725
Dr.Sc. (Pharm.), Corresponding Member, Russian Academy of Sciences, Head of the Department of Industrial Pharmacy
Russian Federation, st. Trubetskaya, 8, p. 2, Moscow, 119048References
- Järbrink K., Ni G., Sönnergren H. et al. Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Syst Rev. 2016; 5(1): 152. doi: 10.1186/s13643-016-0329-y.
- Sen C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv Wound Care. 2019; 8(2): 39–48. doi: 10.1089/wound.2019.0946.
- Nadir A., Kaptanoglu M., Sahin E. et al. Post-thoracotomy wound separation (DEHISCENCE): A disturbing complication. Clinics. 2013; 68(1): 1–4. doi: 10.6061/clinics/2013(01)OA01.
- Schierle C.F., De la Garza M., Mustoe T.A., Galiano R.D. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 2009; 17(3): 354–359. doi: 10.1111/j.1524-475X.2009.00489.x.
- Pastar I., Nusbaum A.G., Gill J. et al. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection, PLoS One. 2013; 8(2): e56846; https://doi.org/10.1371/journal.pone.0056846.
- Chellan G., Shivaprakash S., Ramaiyar S.K. et al. Spectrum and prevalence of fungi infecting deep tissues of lower-limb wounds in patients with type 2 diabetes, J. Clin. Microbiol. 2010; 48: 2097–2102; https://doi.org/10.1128/ JCM.02035-09.
- Kalan L.R., Brennan M.B. The role of the microbiome in nonhealing diabetic wounds. Ann N Y Acad Sci. 2019; 1435(1): 79–92. doi: 10.1111/nyas.13926.
- Tejiram S., Shupp J.W. Sepsis in surgical patients: Burn sepsis. Surgery. 2024; 175(4): 1259–1261. doi: 10.1016/j.surg.2023.11.035.
- Koehler J., Brandl F.P., Goepferich A.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J. 2018; 100: 1–11; https://doi.org/10.1016/j.eurpolymj.2017.12.046.
- Bakar N.A. et al. Understanding the ideal wound healing mechanistic behavior using in silico modelling perspectives: A review. Journal of Tissue Viability.2024; 33(Issue 1):104–115; https://doi.org/10.1016/j.jtv.2023.11.001.
- Воюцкий С.С. Аутогезия и адгезия высокополимеров. М.: Ростехиздат. 1960. 211 с. [Voyutsky S.S. Autohesion and adhesion of high polymers. M.: Rostekhizdat. 1960. 211 p. (In Russ.)].
- Teller P., White T.K. The Physiology of Wound Healing: Injury Through Maturation. Surgical Clinics of North America. 2009; 89(3): 599–610. doi: 10.1016/j.suc.2009.03.006.
- Pratima R.S., Anil K., Ravindra Pratap S. et al. Nanotechnological Aspects for Next-Generation Wound Management. Vol. 2. Academic Press. Elsevier; 2024.
- Кузнецов А.О., Зырянов О.А., Бркич Г.Э. Возможности применения полимеров для лечения раневых повреждений. Биотехнология и биомедицинская инженерия: сборник научных трудов по материалам ХIII Всероссийской научно-практической конференции с международным участием, посвященной 88-летию Курского государственного медицинского университета, Курск, 23 ноября 2023 года. Курск: КГМУ. 2023: 331–335. [Kuznetsov A.O., Zyryanov O.A., Brkich G.E. The possibilities of using polymers for the treatment of wound injuries. Biotechnology and biomedical engineering: a collection of scientific papers based on the materials of the XIII All-Russian Scientific and practical conference with international participation dedicated to the 88th anniversary of Kursk State Medical University, Kursk, November 23, 2023. Kursk: KGMU, 2023. Р. 331335. (In Russ.)].
- Nidhi T., Dharmendra K., Anjali P. et al. Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. Journal of Drug Delivery Science and Technology. 2023; 82: 1–22; https://doi.org/10.1016/j.jddst.2023.104319.
- Khain E., Sander L.M., Schneider-Mizell C.M. The Role of Cell-Cell Adhesion in Wound Healing. Journal of Statistical Physics. 2007; 128: 209–219. doi: 10.1007/s10955-006-9194-8.
- Богданова Ю.Г. Адгезия и ее роль в обеспечении прочности полимерных композитов: учеб. пособие для студентов специальности «Композиционные наноматериалы». М: Московский государственный университет им. М. В. Ломоносова, 2010. 68 с. [Bogdanova Yu.G. Adhesion and its role in ensuring the strength of polymer composites: textbook. handbook for students of the specialty "Composite nanomaterials". Moscow: Lomonosov Moscow State University, 2010. 68 p. (In Russ.)].
- Берлин А.А., Басин В.Е. Основы адгезии полимеров; 2-е изд., перераб. и доп. М.: Химия, 1974. 391 с. [Berlin A.A., Bassin V.E. Base Daddy polymers; 2nd ed. perab. and DOP. M.: Chemistry, 1974. 391 p. (In Russ.)].
- Поляков Н.С. Адсорбция. Большая российская энциклопедия. Том 1. Москва, 2005: 246–248 [Polyakov N.S. Adsorption. The Great Russian Encyclopedia. Volume 1. Moscow, 2005: 246–248. (In Russ.)].
- Ali N.J.A., Gomes M.D., Bauer R. et al. Essential Role of Polarity Protein Par3 for Epidermal Homeostasis through Regulation of Barrier Function, Keratinocyte Differentiation, and Stem Cell Maintenance. Journal of Investigative Dermatology. 2016; 136: 2406–2416; http://dx.doi.org/10.1016/j.jid.2016.07.011.
- Hackam D.J., Ford H.R. Cellular, Biochemical, and Clinical Aspects of Wound Healing. Surgical Infections. 2002; 3: 23–36. doi: 10.1089/sur.2002.3.s1–23.
- Han Zhang, Xiang Lin, Xinyue Cao et al. Developing natural polymers for skin wound healing, Bioactive Materials. 2024; 33: 355–376; https://doi.org/10.1016/j.bioactmat.2023.11.012.
- Пятигорская Н.В., Каргин В.С., Бркич Г.Э. Виды модификации хитозана путем использования различных дериватизирующих агентов. Медико-фармацевтический журнал Пульс. 2021; 23(4): 23–30. [Pyatigorskaya N.V., Kargin V.S., Brkich G.E. Types of chitosan modification by using various derivatizing agents. Medico-pharmaceutical journal Pulse. 2021; 23(4): 23–30. (In Russ.)]. doi: 10.26787/nydha-2686-6838-2021-23-4-23-30.
- Jain R., Calderon D., Kierski P.R. et al. Abbott. Raman spectroscopy enables noninvasive biochemical characterization and identification of the stage of healing of a wound. Anal. Chem. 2014; 86(8): 3764–3772.
