Effect of apolipoprotein A-I complexes with cytostatic drugs induce apoptosis in Ehrlich ascites carcinoma cell culture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Improving the effectiveness of cancer treatment remains an urgent task today. The use of various transport forms for therapeutic agents makes it possible to improve their bioavailability and specificity of distribution in the body, reducing toxic effects.

Aim. This study aimed at evaluating the effect of complexes of the native protein apolipoprotein A-I with cytostatic drugs of various concentrations [0.1 and 1 mkg/ml] on the activation of caspase 3/7 in Ehrlich ascites carcinoma cell culture.

Materials and methods. ApoA-I was isolated from the HDL fraction of human blood plasma. The protein was conjugated with cytostatic drugs (actinomycin D, doxorubicin, vinblastine, melphalan). The experiments were carried out on cell culture of Ehrlich's ascites carcinoma. Incubation of Ehrlich ascites carcinoma cells with the studied complexes in various dosages was carried out for 24 hours, 30 minutes before the end the reagent CellEventTM Caspase-3/7 Green Detection Reagent (Thermo Fisher Scientific, USA) was added. The calculation of the number of apoptotic cells was recorded using the Program AxioVizion V.4.5.

Results. It has been shown that the addition of ApoA-I complexes with antitumor drugs promotes the activation of caspases 3/7 in Ehrlich ascites carcinoma cells when using cytostatic drugs in minimal concentrations [0.1 µg/ml]. Drugs without a carrier did not cause this effect.

Conclusion. The use of ApoA-I as a transport form of antitumor drugs contributes to a more effective activation of apoptosis in cells of Ehrlich ascites carcinoma in relation to cytostatics without a carrier.

Full Text

Restricted Access

About the authors

N. V. Trifonova

Federal Research Center for Fundamental and Translational Medicine

Author for correspondence.
Email: Nataliya.V.T@yandex.ru
ORCID iD: 0000-0003-0697-8846

Junior Research Scientist, Laboratory of Medical Biotechnology; Research Institute of Biochemistry

Russian Federation, 2 Timakova Str., Novosibirsk, 630060

R. A. Knyazev

Federal Research Center for Fundamental and Translational Medicine

Email: knjazev_roman@mail.ru
ORCID iD: 0000-0003-2678-8783
SPIN-code: 7401-5637

Ph.D. (Biol.), Leading Research Scientist, Laboratory of Medical Biotechnology; Research Institute of Biochemistry

Russian Federation, 2 Timakova Str., Novosibirsk, 630060

M. V. Kotova

Federal Research Center for Fundamental and Translational Medicine

Email: zerokiri@mail.ru
ORCID iD: 0000-0001-6276-9630
SPIN-code: 3958-1142

Junior Research Scientist, Laboratory of Medical Biotechnology; Research Institute of Biochemistry

Russian Federation, 2 Timakova Str., Novosibirsk, 630060

L. M. Polyakov

Federal Research Center for Fundamental and Translational Medicine

Email: polyakov47.lev@yandex.ru
ORCID iD: 0000-0001-5905-8969
SPIN-code: 4600-3258

Dr.Sc. (Med.), Professor, Head of the Laboratory of Medical Biotechnology; Research Institute of Biochemistry

Russian Federation, 2 Timakova Str., Novosibirsk, 630060

References

  1. Bray F., Laversanne M., Sung H. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229–263. doi: 10.3322/caac.21834.
  2. Niculescu A.G., Grumezescu A.M. Novel tumor-targeting nanoparticles for cancer treatment – A review. International Journal of Molecular Sciences. 2022; 23(9): 5253. doi: 10.3390/ijms23095253.
  3. Khizar S., Alrushaid N., Khan F.A. et al. Nanocarriers based novel and effective drug delivery system. International Journal of Pharmaceutics. 2023; 632: 122570. doi: 10.1016/j.ijpharm.2022.122570.
  4. Трифонова Н.В., Князев Р.А., Поляков Л.М. Влияние комплекса аполипопротеина А-I с актиномицином Д на биосинтез ДНК в нормальных и опухолевых клетках. Современные проблемы науки и образования. 2016; 6: 144. [Trifonova N.V., Knyazev R.A., Polyakov L.M. The effect of apolipoprotein A-I complex with actinomycin D on DNA biosynthesis in normal and tumor cells. Sovremennye problemy nauki i obrazovanija. 2016; 6: 144. (In Russ.)].
  5. Hatch F.T., Lees R.S. Practical method for plasma lipoprotein analysis. Advances in lipid research. 1968; 6: 2–68.
  6. Attallah N.A., Lata G.F. Steroid-protein interactions studied by fluorescence quenching. Biochimicaet Biophysica Acta (BBA)-Protein Structure. 1968; 168(2): 321–333. doi: 10.1016/0005-2795(68)90154-2.
  7. Князев Р. А., Трифонова Н.В., Поляков Л.М. Транспортная форма противоопухолевых препаратов доксорубицина и мелфалана на основе аполипопротеина А-I плазмы крови. Современные проблемы науки и образования. 2016; 6: 221. [Knyazev R.A., Trifonova N.V., Polyakov L.M. Apolipoprotein A-I as carrier anticancer drugs doxorubicin and melphalan. Sovremennye problemy nauki i obrazovanija. 2016; 6: 221. (In Russ.)].
  8. Инжеваткин Е.В. Практикум по экспериментальной онкологии на примере асцитной карциномы Эрлиха. Метод. разработка. Красноярск: Красноярский государственный университет. 2004; 10 с. [Inzhevatkin E.V. Praktikum po eksperimental’noi onkologii na primere astsitnoi kartsinomy Erlikh. Method. razrabotka. Krasnoyarsk: Krasnoyarskiy Gosudarstvennyi Universitet. 2004; 10 p. (In Russ.)].
  9. Pfeffer C.M., Singh A.T.K. Apoptosis: a target for anticancer therapy. International journal of molecular sciences. 2018; 19(2): 448. doi: 10.3390/ijms19020448.
  10. Killinger M., Veselá B., Procházková M. et al. A single-cell analytical approach to quantify activated caspase-3/7 during osteoblast proliferation, differentiation, and apoptosis. Analytical and bioanalytical chemistry. 2023; 413(20): 5085–5093. doi: 10.1007/s00216-021-03471-9.
  11. Bhat A.A., Thapa R., Afzal O. et al. The pyroptotic role of Caspase-3/GSDME signalling pathway among various cancer: A Review. International journal of biological macromolecules. 2023; 242: 124832. doi: 10.1016/j.ijbiomac.2023.124832.
  12. Eskandari E., Eaves C.J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. Journal of Cell Biology. 2022; 221(6): e202201159. doi: 10.1083/jcb.202201159.
  13. Ayoup M.S., Mansour A.F., Abdel-Hamid H. et al. Nature-inspired new isoindole-based Passerini adducts as efficient tumor-selective apoptotic inducers via caspase-3/7 activation. European Journal of Medicinal Chemistry. 2023; 245(1): 114865. doi: 10.1016/j.ejmech.2022.114865.
  14. Fung K.Y., Ho T.W.W., Xu Z. et al. Apolipoprotein A1 and high-density lipoprotein limit low-density lipoprotein transcytosis by binding SR-B1. Journal of Lipid Research. 2024; 65(4): 100530. doi: 10.1016/j.jlr.2024.100530.
  15. Marques P.E., Nyegaard S., Collins R.F. et al. Multimerization and retention of the scavenger receptor SR-B1 in the plasma membrane. Developmental Cell. 2019; 50(3): 283–295. doi: 10.1016/j.devcel.2019.05.026.
  16. Wang D., Huang J., Gui T. et al. SR-BI as a target of natural products and its significance in cancer. Seminars in cancer biology. Academic Press. 2022; 80: 18–38. doi: 10.1016/j.semcancer.2019.12.025.
  17. Yu H. HDL and Scavenger Receptor Class B Type I (SRBI). In: Zheng L. (eds) HDL Metabolism and Diseases. Advances in Experimental Medicine and Biology. Springer, Singapore. 2022; 1377: 79–93. doi: 10.1007/978-981-19-1592-5_6.
  18. Masimov R., Büyükköroğlu G. HDL-chitosan nanoparticles for siRNA delivery as an SR-B1 receptor targeted system. Combinatorial Chemistry & High Throughput Screening. 2023; 26(14): 2541. doi: 10.2174/1386207326666230406124524.
  19. Feng H., Wang M., Wu C. et al. High scavenger receptor class B type I expression is related to tumor aggressiveness and poor prognosis in lung adenocarcinoma: A STROBE compliant article. Medicine. 2018; 97(13): e0203. doi: 10.1097/MD.0000000000010203.
  20. Berney E., Sabnis N., Panchoo M. et al. The SR‐B1 receptor as a potential target for treating glioblastoma. Journal of Oncology. 2019; 2019(1): 1805841. doi: 10.1155/2019/1805841.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Assessment of the number of apoptotic cells in the culture of Ehrlich ascites carcinoma in the control group and with the addition of apoА-I (0,5 µg/ml) (magnitude ×200)

Download (243KB)
3. Fig. 2. Assessment of caspases 3/7 activity with the addition of cytostatics at concentrations of 1 and 0.1 µg/ml (magnitude ×200)

Download (476KB)
4. Fig. 3. Assessment of caspases 3/7 activity with the addition of cytostatics at concentrations of 0.1 µg/ml (magnitude ×200)

Download (604KB)

Copyright (c) 2025 Russkiy Vrach Publishing House