UV-B RAYS ACTION ON FLAX CULTURE IN VITRO AND THE ACCUMULATION OF PHENOLIC COMPOUNDS IN THEM


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The flax possesses the ability to biosynthesis of secondary metabolites, including phenolic compounds, which have high biological activity. Methods of biotechnology allow us to research the influence of various stressors on plants. The aim of the work was to study the effect of UV-B rays on the morphophysiological characteristics of the contrast resistance to stress strains of callus cultures of flax (Linum usitatissimum L.) and the accumulation of phenolic compounds in them. A feature of callus was evaluated by morphological characteristics and water content. Phenolic compounds were extracted with 96% ethanol and their total content was determined spectrophotometrically. It was found that in response to the action of UV-B radiation in flax callus cultures occurs activation of adaptation processes. The studied parameters change to a greater measure in flax culture with reduced stress resistance. Thus, the influence of UV-B rays on plant cell cultures leads to an increase in the accumulation of phenolic compounds in them.

全文:

受限制的访问

作者简介

E. Goncharuk

К.А. Timiryazev Institute of Plant Physiology Russian Academy of Sciences (IPP RAS)

Email: goncharuk.ewgenia@yandex.ru
Ph.D. (Biol.), Senior Research Scientist Moscow

L. Nazarenko

Moscow City University

Email: nlv.mgpu@mail.ru
Ph.D. (Biol.), Associate Professor, Institute of Natural Sciences and Sports Technologies (MGPU) Moscow

N. Zagoskina

К.А. Timiryazev Institute of Plant Physiology Russian Academy of Sciences (IPP RAS)

Email: biophenol@gmail.com
Dr.Sc. (Biol.), Professor Moscow

参考

  1. Dotto M., Casati P. Developmental reprogramming by UV-B radiation in plants // Plant Science. 2017. V. 264. P. 96-101.
  2. Запрометов М.Н. Фенольные соединения: распространение, метаболизм и функции в растениях. М.: Наука. 1993. 272 с.
  3. Bidel L.P., Coumans M., Baissac Y., Doumas P., Jay-Allemand C. Biological activity of phenolics in plant cells // Recent advances in polyphenol research. United Kingdom: Blackwell Publising Ltd. 2010. V. 2. P. 163-205.
  4. Santin M., Lucini L., Castagna A., Rocchetti G., Hauser M. T., Ranieri A. Comparative “phenol-omics” and gene expression analyses in peach (Prunus persica) skin in response to different postharvest UV-B treatments // Plant physiology and biochemistry. 2019. V. 135. P. 511-519.
  5. Бутенко Р.Г. Биология клеток высших растений in vitro и биотехнологии на их основе. М.: ФБк-Пресс.1999. 160 с.
  6. Nosov A.M. Application of cell technologies for production of plant-derived bioactive substances of plant origin // Applied biochemistry and microbiology. 2012. V. 48. P. 609-624.
  7. Толкачев О.Н., Жученко А.А.-мл. Биологически активные вещества льна: использование в медицине и питании // Химико-фармацевтический журнал. 2000. № 7. С. 23-28.
  8. Титок В.В., Лемеш В.А., Хотылева Л.В. Лен культурный. Классификация, ботаническая и хозяйственная характеристика, генетика, физиология, биохимия и биотехнология. Saarbrücken: LAP LAMBERT Academic Publishing. 2012. 268 с.
  9. Государственный реестр селекционных достижений, допущенных к использованию. Т. 1. Сорта растений https://reestr.gossort.com/reestr.
  10. Zagoskina N. V., Goncharuk E.A., Alyavina A.K. Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant // Russian Journal of Plant Physiology. 2007. V. 54. P. 237-243.
  11. Mierziak J., Kostyn K., Kulma A. Flavonoids as important molecules of plant interactions with the environment // Molecules. 2014. V. 19. P. 16240-16265.
  12. Ahmad W., Zahir A., Nadeem M., Garros L., Drouet S., Renouard S., Abbasi B.H. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures // Process biochemistry. 2019. V. 79. P. 155-165.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2019
##common.cookie##