Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The flax possesses the ability to biosynthesis of secondary metabolites, including phenolic compounds, which have high biological activity. Methods of biotechnology allow us to research the influence of various stressors on plants. The aim of the work was to study the effect of UV-B rays on the morphophysiological characteristics of the contrast resistance to stress strains of callus cultures of flax (Linum usitatissimum L.) and the accumulation of phenolic compounds in them. A feature of callus was evaluated by morphological characteristics and water content. Phenolic compounds were extracted with 96% ethanol and their total content was determined spectrophotometrically. It was found that in response to the action of UV-B radiation in flax callus cultures occurs activation of adaptation processes. The studied parameters change to a greater measure in flax culture with reduced stress resistance. Thus, the influence of UV-B rays on plant cell cultures leads to an increase in the accumulation of phenolic compounds in them.

Full Text

Restricted Access

About the authors

E. A Goncharuk

К.А. Timiryazev Institute of Plant Physiology Russian Academy of Sciences (IPP RAS)

Email: goncharuk.ewgenia@yandex.ru
Ph.D. (Biol.), Senior Research Scientist Moscow

L. V Nazarenko

Moscow City University

Email: nlv.mgpu@mail.ru
Ph.D. (Biol.), Associate Professor, Institute of Natural Sciences and Sports Technologies (MGPU) Moscow

N. V Zagoskina

К.А. Timiryazev Institute of Plant Physiology Russian Academy of Sciences (IPP RAS)

Email: biophenol@gmail.com
Dr.Sc. (Biol.), Professor Moscow


  1. Dotto M., Casati P. Developmental reprogramming by UV-B radiation in plants // Plant Science. 2017. V. 264. P. 96-101.
  2. Запрометов М.Н. Фенольные соединения: распространение, метаболизм и функции в растениях. М.: Наука. 1993. 272 с.
  3. Bidel L.P., Coumans M., Baissac Y., Doumas P., Jay-Allemand C. Biological activity of phenolics in plant cells // Recent advances in polyphenol research. United Kingdom: Blackwell Publising Ltd. 2010. V. 2. P. 163-205.
  4. Santin M., Lucini L., Castagna A., Rocchetti G., Hauser M. T., Ranieri A. Comparative “phenol-omics” and gene expression analyses in peach (Prunus persica) skin in response to different postharvest UV-B treatments // Plant physiology and biochemistry. 2019. V. 135. P. 511-519.
  5. Бутенко Р.Г. Биология клеток высших растений in vitro и биотехнологии на их основе. М.: ФБк-Пресс.1999. 160 с.
  6. Nosov A.M. Application of cell technologies for production of plant-derived bioactive substances of plant origin // Applied biochemistry and microbiology. 2012. V. 48. P. 609-624.
  7. Толкачев О.Н., Жученко А.А.-мл. Биологически активные вещества льна: использование в медицине и питании // Химико-фармацевтический журнал. 2000. № 7. С. 23-28.
  8. Титок В.В., Лемеш В.А., Хотылева Л.В. Лен культурный. Классификация, ботаническая и хозяйственная характеристика, генетика, физиология, биохимия и биотехнология. Saarbrücken: LAP LAMBERT Academic Publishing. 2012. 268 с.
  9. Государственный реестр селекционных достижений, допущенных к использованию. Т. 1. Сорта растений https://reestr.gossort.com/reestr.
  10. Zagoskina N. V., Goncharuk E.A., Alyavina A.K. Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant // Russian Journal of Plant Physiology. 2007. V. 54. P. 237-243.
  11. Mierziak J., Kostyn K., Kulma A. Flavonoids as important molecules of plant interactions with the environment // Molecules. 2014. V. 19. P. 16240-16265.
  12. Ahmad W., Zahir A., Nadeem M., Garros L., Drouet S., Renouard S., Abbasi B.H. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures // Process biochemistry. 2019. V. 79. P. 155-165.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies